Rational Choice of Security Measures via Multi-Parameter Attack Trees

CRITIS'06 August 30 – September 2, 2006, Samos Island, Greece

Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, Jan Willemson

 It is a complicated task to evaluate whether (IT-)infrastructure of a company is protected

- It is a complicated task to evaluate whether (IT-)infrastructure of a company is protected
 - sufficiently (i.e. achieving a satisfactory level), and

- It is a complicated task to evaluate whether (IT-)infrastructure of a company is protected
 - sufficiently (i.e. achieving a satisfactory level), and
 - reasonably (i.e. not spending too much)

- It is a complicated task to evaluate whether (IT-)infrastructure of a company is protected
 - sufficiently (i.e. achieving a satisfactory level), and
 - reasonably (i.e. not spending too much)
- Even if the losses associated with vulnerability exploits can be estimated, the corresponding probabilities are very difficult to evaluate

- It is a complicated task to evaluate whether (IT-)infrastructure of a company is protected
 - sufficiently (i.e. achieving a satisfactory level), and
 - reasonably (i.e. not spending too much)
- Even if the losses associated with vulnerability exploits can be estimated, the corresponding probabilities are very difficult to evaluate
- This is especially true for targeted, company-specific attacks, since the required statistics does not exist or is difficult to get

Luckily, targeted attacks are mostly rational, i.e. the attackers

- Luckily, targeted attacks are mostly rational, i.e. the attackers
 - attack only if the attack is profitable, and

- Luckily, targeted attacks are mostly rational, i.e. the attackers
 - attack only if the attack is profitable, and
 - choose the attack with the highest outcome

- Luckily, targeted attacks are mostly rational, i.e. the attackers
 - attack only if the attack is profitable, and
 - choose the attack with the highest outcome
- From now on, this paper assumes rational attacks

- Luckily, targeted attacks are mostly rational, i.e. the attackers
 - attack only if the attack is profitable, and
 - choose the attack with the highest outcome
- From now on, this paper assumes rational attacks
- Such attacks can be modelled using gradual refinement starting from primary threats and breaking them down to elementary attacks

- Luckily, targeted attacks are mostly rational, i.e. the attackers
 - attack only if the attack is profitable, and
 - choose the attack with the highest outcome
- From now on, this paper assumes rational attacks
- Such attacks can be modelled using gradual refinement starting from primary threats and breaking them down to elementary attacks
- As a result, we obtain an attack tree

When modelling the attack, we need to

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:
 - Gains the gains of the attacker if attack succeeds

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:
 - Gains the gains of the attacker if attack succeeds
 - Costs the cost of the attack

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:
 - Gains the gains of the attacker if attack succeeds
 - Costs the cost of the attack
 - p the success probability of the attack

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:
 - Gains the gains of the attacker if attack succeeds
 - Costs the cost of the attack
 - p the success probability of the attack
 - q, Penalties the probability of getting caught and penalties (if the attack was successful)

- When modelling the attack, we need to
 - set some parameter values to the leaves of the tree
 - define computation rules for parameter propagation
- In this paper we will consider the following parameters:
 - Gains the gains of the attacker if attack succeeds
 - Costs the cost of the attack
 - p the success probability of the attack
 - q, Penalties the probability of getting caught and penalties (if the attack was successful)
 - q_, Penalties_ the probability of getting caught and penalties (if the attack was unsuccessful)

Attack preparation costs

Tree Computations (I)

Denoting $\pi = q \cdot \text{Penalties}$ and $\pi_{-} = q_{-} \cdot \text{Penalties}_{-}$, we set the parameters (Costs, p, π, π_{-}) for every leaf node. Then we have

 $\mathsf{Outcome} = -\mathsf{Costs}_1 + p \cdot \mathsf{Gains} - p \cdot \pi - (1-p) \cdot \pi_-$

• For an OR-node with child nodes with parameters $(\text{Costs}_1, p_1, \pi_1, \pi_{1-})$ and $(\text{Costs}_2, p_2, \pi_2, \pi_{2-})$ the parameters $(\text{Costs}, p, \pi, \pi_-)$ are computed as:

$$(\mathsf{Costs}, p, \pi, \pi_{-}) =$$

 $\begin{cases} (\text{Costs}_1, p_1, \pi_1, \pi_{1-}), & \text{if } \text{Outcome}_1 > \text{Outcome}_2 \\ (\text{Costs}_2, p_2, \pi_2, \pi_{2-}), & \text{if } \text{Outcome}_1 \leq \text{Outcome}_2 \end{cases} \end{cases}$

Tree Computations (II)

• For a AND-node with child nodes with parameters $(Costs_1, p_1, \pi_1, \pi_{1-})$ and $(Costs_2, p_2, \pi_2, \pi_{2-})$ the parameters $(Costs, p, \pi, \pi_-)$ are computed as follows:

Costs = Costs₁ + Costs₂

$$p = p_1 \cdot p_2$$

 $\pi = \pi_1 + \pi_2$
 $\pi_- = \frac{p_1(1-p_2)(\pi_1 + \pi_{2-}) + (1-p_1)p_2(\pi_{1-} + \pi_2)}{1-p_1p_2} + \frac{(1-p_1)(1-p_2)(\pi_{1-} + \pi_{2-})}{1-p_1p_2}$

The last formula represents the average penalty of an attacker, assuming that at least one of the two child-attacks was not successful

Security Measures

- Let T denote the set of all primary threats and let M denote some set of security measures
- Let $Loss[\mathfrak{T}]$ and $Loss[\mathfrak{T} | \mathcal{M}]$ denote the losses of the company without and with the measures, respectively
- Let $Outcome[\mathcal{T} \mid \mathcal{M}]$ denote the outcome of the game when measures \mathcal{M} are applied
- The set \mathcal{M} of measures is *sufficient (against rational attacks)* if for all primary threats $\mathcal{T} \in \mathfrak{T}$ we have $\mathsf{Outcome}[\mathcal{T} \mid \mathcal{M}] \leq 0$, or equivalently, $\mathsf{Loss}[\mathfrak{T} \mid \mathcal{M}] = 0$
- The set \mathcal{M} of measures is *adequate* (worth its cost) if $Loss[\mathfrak{T}] Loss[\mathfrak{T} \mid \mathcal{M}] > Cost[\mathcal{M}]$

Example continued

Let us consider two potential sets of security measures:

- The set \mathcal{M}_X with price $Cost[\mathcal{M}_X] = \$2,000,000$ reducing the probability of break-in from 0.5 to 0.25
- The set \mathcal{M}_Y with price $Cost[\mathcal{M}_Y] = \$1,000,000$ increasing the detection probabilities (hence also the parameters π and π_-) twice
- Provided both sets are adequate, are they also sufficient?

Example: Set \mathcal{M}_X

Example: Set \mathcal{M}_X

Example: Set \mathcal{M}_Y

Example: Set \mathcal{M}_Y

Conclusions

- Our contributions:
 - We have considered multi-parameter attack trees with interdependent parameters
 - We have shown how such trees can be used to make security decisions against rational attackers
- Problems to study further:
 - Gains is a global parameter, making the computations in OR-nodes imprecise
 - Dependencies between different child nodes

Thank You!

Questions?