
Estimation of TTP features in Non-repudiation service*

Mildrey Carbonell,
University of Carlos III Madrid
{mcarbone@inf.uc3m.es}

Jose A. Onieva†, Javier Lopez

Computer Science Department, E.T.S. Ingeniería Informática
University of Malaga, Spain

{onieva,jlm,galpert}@lcc.uma.es

Jianying Zhou
Institute for Infocomm Research, Singapore

jyzhou@i2r.a-star.edu.sg

Abstract. In order to achieve a high performance in a real implementation of
the non-repudiation service it is necessary to estimate timeouts, TTP features,
publication key time, number of originators and recipients, and other relevant
parameters. An initial work of the authors focused on a basic event-oriented
simulation model for the estimation of timeouts. In the actual work, we present
a set of extensions to that basic model for the estimation of the TTP features
(storage capacity and ftp connection capacity). We present and analyze the new
and valuable results obtained.

1 Introduction

Most of the non-repudiation services solutions have been defined by means of a
protocol using a Trusted Third Party (TTP). First solutions made use of the TTP in
each of the steps of the protocol involving a high risk of communication bottleneck.
Nevertheless, Zhou and Gollmann presented in [1] a protocol where the TTP inter-
venes during each execution as a “low weight notary”. Other optimistic solutions, like
[2], use an off-line TTP. They assume that the participating entities have no malicious
intentions and that the TTP need to be involved if there is an exception in the protocol
execution. There are solutions that eliminate the TTP’s involvement [3]. However,
these ones need a strong requirement like same computational power in all involved
party or many rounds in the protocol execution. Therefore, the role of the TTP is
essential for practical non-repudiation protocols, in one or another way.

* This work was partially supported by ASPECTS-M Project (Reference Models for Secure

Architectures in Mobile Electronic Payments), CICYT-2004.
† The author has been funded by the Consejeria de Innovacion, Ciencia y Empresa (Junta de

Andalucia) under the III Andalusian Research Plan.

M. Carbonell, J. M. Sierra, J. A. Onieva, J. Lopez and J. Zhou, “Estimation of TTP Features in Non-repudiation Service”, 7th International
Conference on Computational Science and Its Applications (ICCSA07), vol. 4706, pp. 549-558, 2007.
http://doi.org/10.1007/978-3-540-74477-1_51
NICS Lab. Publications: https://www.nics.uma.es/publications

Non-repudiation protocols include parameters whose values depend on the real
conditions of each scenario or application. Some of these parameters are: timeouts,
number of originators and receivers involved in the protocol, features of the TTPs
(e.g., number of concurrent ftp connections and storage capacity), etc.

In a recent work [4], we have demonstrated how event-oriented simulation can be
considered as a tool to estimate the timeouts of non-repudiation protocols. In this
work we propose an extension of the simulation model and tests to estimate the ap-
propriate values of the TTP features (storage capacity and ftp connection capacity).
Additionally, this work pretends to further show the convenience of using the simula-
tion techniques as a supporting tool for the correct implementation of non-repudiation
protocols while, at the same time, proving the efficiency and fairness of the protocols
in real scenarios.

The rest of the paper is organized as follows. In section 2, we present the specifica-
tion of the event-oriented simulation model. In section 3, we present the new prob-
lems to solve with the model, and new entities variables. In section 4, we describe the
principal simulation events related to the TTP process. Section 5 analyzes the results
of the different tests. Finally, section 6 concludes the paper.

2 Simulation Model of the multi-party protocol

In order to show the results of our simulation model, we will make use a multi-
party scenario because the set of events that take place in that type of scenario is,
obviously, more complex than in a two-parties one. The first effort to generalize non-
repudiation protocols to multi-party scenarios was presented in [5][6]. Next, other
multi-party scenarios were presented in [7] [8]. We decide to use the first protocol
[5]. This multi-party scenario is based on the existence of one originator (O) and
several recipients (R). The protocol uses the same key k for each recipient, such that,
an encrypted message c, evidence of origin (EOO), evidence of submission (Subk)
and evidence of confirmation (Conk) are generated for each protocol run. To ensure
the fairness of the protocol, the key is only revealed to those recipients R’ that replied
with evidence of receipt (EORi). We use the same event-oriented simulation model
like in the previous work [4]. Following we describe the steps and events of the pro-
tocol (fig 1).

The originator O multicasts to all recipients R the EOO corresponding to the en-
crypted message c in step 1 <event 1, 2 >. Next, the originator waits for EOR in step
2 <event 3 > and then send a key publication request to the TTP in step 3 <event 4
>. If the TTP has enough connections and storage capacity, it publishes the key and O
is disconnected <event 6 >, otherwise O will try the request later <event 5>. Once the
key is published, the originator and the recipients can start Con requests in step 4 and
step 5 <event 7>. If allowed by FTP resources, the TTP opens one connection for a
Con request <event 9, 10 >. Afterwards, the entity involved verifies the key of the
message and outputs an affirmative or negative response to the request. Finally, the
entity is disconnected <event 14, 15 >. If FTP resources are overloaded, the involved
entity should retry the connection later <event 11, 12 >. The key is maintained pub-

licly in the TTP’s database until timeout t1 <event 13 >. When all involved entities
have verified the key, the protocol run finishes (step 4 and step 5).

Fig. 1: Simulation Model

2 New Simulation problems and entities

Using the same model we have realized that it is important to reduce the key stor-
age time in the TTP, as well as, to eliminate the unsuccessful confirmation requests
while the number of originators and recipients increase or the TTP features (number
of concurrent ftp connections and storage capacity) change. It is relevant to note that
the elimination of unsuccessful confirmation requests guarantees a fair execution of
the protocol.

For this reason, we study two new problems. Firstly, we will denote P1 as the
problem of the estimation of efficient features in TTP without increasing the timeout t
and while keeping all Con requests successful. Similarly, we will denote P2 as the
problem of calculating the estimated number of simultaneous originators and recipi-
ents without any changes in the critical parameters (TTP features, timeout t) while
keeping all Con requests successful.

In comparison with our previous work, we have not defined new entities for the
model. However, we have added new variables that will allow us to use and store the
values necessary for the new estimations. Following we describe all the entities in-
cluding some important previous and new variables.

11. O´s Con
request retry

7. O´s Con
Request

12. R´s Con
request retry

12. R´s
Con

request
retry

8. R´s
Con
request

6. Disconnection of O´s publication request
9. Connection for O´s con request
10. Connection for R´s con request

14. O FTP disconnection
15. R FTP disconnection

K

TTP

5.O´s key
publication request retry

4. Arrival of publica-
tion

2. Message arrival to R
 3. EOR arrival to O

1. Message Generation

O
R1

8. R´s
Con

request

3. EOR arrival to O

R2 2. Message arrival to R

Table 1: Simulator entity

Entity 1: Simulator (S)
Variables Description
Input variables
FinalTime Final simulation time
MsgGenDist List of message generation distributions for each O
CommunicationOR ,
CommunicationOTTP
CommunicationRTTP

Matrix of delay distributions of network messages, be-
tween O and R, between O and the TTP, between R and
the TTP

EORsendDist Delay distribution of the EOR message

PUBConnectionDist Time distribution of O’s connection to publish the key in
the TTP

FTPConnectionDist FTP connection time distribution of O and R
State variables
CurrentTime Current simulation time
LEntity List of entities
LEvent List of events

Table 2: Message entity

Entity 2: Message (M): This entity is created by originators.
Variables Description
State variables
CreationTime Creation time
State States of the message:

St1 : It is being sent to R
St2: O is waiting for EOR
St3: O is trying to publish the key in the TTP
St4: The key has been published in the TTP
St5: The key was deleted from the TTP

InitTime_O_Con Initial time of O’s Con request (step 5)
Output variables
PubDelayTime Key publication delay time
DelayTime_O_Con Delay time of O’s Con request (successful or not)
Nbr_O_Con_Retries Number of O’s Con request retries (step 5)
Status_O_Con Boolean value: True if O’s Con request was successful

(step 5); False if O’s Con request was not successful
(step 5)

DelayTime_R_Con List of delay times of R´s Con requests (step 4)
WaitRTime Total waiting time for all EOR
Nbr_R_Con_Retries List of R´s Con requests retries (step 4)

 Table 3: Originator entity

Entity 3: ORIGINATOR (O)

Variables Description
Input variables
Time_btw_PUBRetries Time between successive retries of O’s key publication

requests
Time_btw_FTPRetries Time between successive retries of O’s Con requests
Output variables
Nbr_Successful_Con Number of successful Con requests
Nbr_Unsuccessful_Con Number of unsuccessful Con requests
Average_Con_Time Average Con request time (step 5) (it is calculated using

DelayTime_O_Con in the message)

Table 4: Recipient entity

Entidad 4 : RECIPIENT (R)
Variables Description
Input variables
Time_btw_FTPRetries Time between successive retries of R’s Con requests
Output variables
Nbr_ReceivedMsg Number of received messages
Nbr_Successful_Con Number of successful Con requests
Nbr_Unsuccessful_Con Number of unsuccessful Con requests
Average_Con_Time Maximum Con request time (step 4)
LUnsuccessfulMsg List of messages which could not be retrieved

Table 5: TTP entity

Entity 5: TTP
Variables Description
Input variables
Max_StorageKTime Key storage time in the TTP
CapacPUBConnection Publication connection capacity
CapacFTPConnection FTP connection capacity
CapacStorage Storage capacity measured in number of keys
State variables
Current_ConnectedPUB Current number of publishing connected entities
Current_ConnectedFTP Number of FTP connected entities
CapacOccupied Occupied storage key capacity
Output variables
LPublicMsg List of messages whose keys were published
Nbr_PUBMsg Number of messages whose keys were published
Nbr_PUBRetries Number of retries of O’s key publication request

caused by the lack of TTP connection capacity
Nbr_PUBRetries_Str Number of retries of O’s key publication request

caused by the lack of TTP storage capacity
Nbr_O_Con_Retries Number of retries of O’s Con request

Nbr_R_Con_Retries Number of retries of R’s Con request
Nbr_Successful_O_Con Total number of successful O’s Con requests
Nbr_Unsuccessful_O_Con Total number of unsuccessful O’s Con requests
Nbr_Successful_R_Con Total number of successful R’s Con requests
Nbr_Unsuccessful_R_Con Total number of unsuccessful R’s Con requests

4 List of Model Simulation Events

 Our previous work described seven events (labelled 1 to 7) that were closely re-
lated to the estimation of the key publication delay time. In the work described in the
present paper we introduce events that are related to all the protocols steps that make
use of the TTP. Events 7 to 15 were defined, but neither fully specified nor elaborated
in the model presented in our previous work. In fact, the problems P1 and P2 ex-
plained in the previous section have required the redefinition of some of the events in
order to include the new variables.

In this sense, the following includes the more representative events closely related
to the sequence of events of the TTP. We exclude the O Con request event due to the
similarity with the R Con request. We can use entity.variable to refer to one variable
of any of the entities. For every event, we describe the name and the input parameters
(between brackets) followed by the description of the event using a simple pseudo-
language. All variables used are defined in the Tables included in the previous sec-
tion.

EVENT 4: Arrival of the publication request to TTP (O: originator, M: mesage,
TTP: trusted third party)
If TTP.Current_ConnectedPUB + 1 > TTP.CapacPUBConnection

Increase TTP.Nbr_PUBRetries
 Add the event O’s key publication request retry (O,M) at time

 t = S.CurrentTime + O.Time_btw_PUBRetries
Else

If TTP.CapacOccupied + 1 >TTP. CapacStorage
Increase TTP.Nbr_PUBRetries_Str
Add the event O’s key publication request retry (O,M) at time

t = S.CurrentTime + O.Time_btw_PUBRetries
Else

Increase TTP.Current_ConnectedPUB
Add the event Disconnection of O’s publication request (O,M, TTP) at time

t = S.CurrentTime + Random value generated with
S.PUBConnectionDist

EVENT 8: R’s Con request (M: message)
Update M.DelayTime_R_Con[Ri]=S.CurrentTime
Add the event Connection for R’s Con request (R,M,TTP) at time
 t = S.CurrentTime + Random value generated with S.CommunicationRTTP(R)

EVENT 10: Connection for R’s Con request(R: recipient, M: message, TTP: trusted
third party)

If TTP.Current_ConnectedFTP + 1 > TTP.CapacFTPConnection
Increase TTP. Nbr_R_Con_Retries
Increase M. Nbr_R_Con_Retries[Ri]
Add the event R’s Con request retry (M) at time

 t = S.CurrentTime + R.Time_btw_FTPRetries
Else

Increase TTP.Current_ConnectedFTP
Add the event R’s FTP disconnection (R,M, TTP) at time t = S.CurrentTime + Random

value generated with S.FTPConnectionDist

EVENT 12: R’s Con request retry (M: message)
Add the event Connection for R’s Con requests (R,M) at time t = S.CurrentTime + Random

value generated with S.CommunicationRTTP(R)

EVENT 13: Key deletion in the TTP (M: message)
Change the state of the message M.State=St5
Decrease TTP.CapacOccupied

EVENT 15: R’s FTP disconnection (R: recipient, M: message, TTP: trusted third
party)
If M is in the list TTP.LPublicMsg and M.State=St4

Increase TTP.Nbr_Successful_R_Con
Add M to the list R.LSuccessfulMsg
Increase R.Nbr_Successful_Con

Else
Increase TTP.Nbr_Unsuccessful_R_Con
Add M to the list R.LUnSuccessfulMsg
Increase R.Nbr_Unsuccessful_Con

Update M.DelayTime_R_Con[Ri]= S.CurrentTime - M.DelayTime_R_Con[Ri]
Decrease TTP.Current_ConnectedFTP

5 Analysis of Results

In the following tests we used the same protocol implementation, same input dis-
tribution variables, and same notations like in the previous work:

− S.MsgGenDist = Uniform distribution between 30 and 60 minutes.
− S.CommunicationOR, S.CommunicationOTTP, S.CommunicationRTTP = uniform

distribution between 10ms and 17ms.
− S.EORsendDist = Uniform distribution between 15ms and 20ms.
− S.PUBConnectionDist = Uniform distribution between 30ms and 50ms.
− S. FTPConnectionDist = Uniform distribution between 25ms and 35ms.

Input variables
− NO, NR: Number of originators and Number of recipients
− C: TTP storage capacity measured in number of keys (TTP. CapacStorage)
− FTP: FTP connection capacity (TTP. CapacFTPConnection)
− TS: Key storage time in the TTP (TTP.Max_StorageKTime)

− RO, RR:Time between successive retries of O´s Con request (O.
Time_btw_FTPRetries) of R´s Con request(R. Time_btw_FTPRetries)

Output variables

− NM: Number of generated messages in the experiment ∑ =

NO

i i MsgNbrO
1

_.

− MP: Number of messages whose keys were published on the TTP
 (TTP.Nbr_PUBMsg)

− CPC, CPA:Number of retries of O´s key publication request caused by the lack of
TTP connection capacity (TTP. Nbr_PUBRetries) and request caused by the lack
of TTP storage capacity (TTP.Nbr_PUBRetries_Str)

− CRO: Number of retries of O´s Con request (TTP.Nbr_O_Con_Retries)
− CRR: Number of retries of R´s Con request(TTP.Nbr_R_Con_Retries)
− SO: Number of successful O´s Con requests (TTP.Nbr_Successful_O_Con)
− SR: Number of successful R´s Con requests (TTP.Nbr_Successful_R_Con)
− UO: Number of unsuccessful O´s Con requests (TTP.Nbr_UnSuccessful_O_Con)
− UR: Number of unsuccessful R´s Con requests (TTP.Nbr_UnSuccessful_R_Con)
− ERT: Average waiting time of all EOR

NO

NM

WaitRTimeMjNO

i

MsgNbrOi

j∑
∑

=

=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

1

_.

1
.

− PKT: Average key publication delay time

NO

NM

mePubDelayTiMjNO

i

MsgNbrOi

j∑
∑

=

=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

1

_.

1
.

We have performed different tests (table 1) that have helped us to obtain good re-
sults for problem P1, and efficient conditions for the protocol operation.

− Test 1 (A,B) : In this test we use small increments for values of C and TS, and this

has resulted in little changes in the unsuccessful Con requests (UO, UR).
− Test 2 (D,E): In this test we increase the values of C, FTP and TS. The result is

that we get a significant reduction of UO, UR.
− Tets 3 (F): In this test we increase the value of TS and obtain a reduction of UO

and UR. However, the key has been published for long time (1 hour), and this is
not a good solution for the Internet case. When analyzing the results, we deduct
that an increment in the capacity of ftp connections (FTP) is necessary.

− Test 4 (G): In this test we increase FTP. The result is that the unsuccessful Con
requests become 0. Additionally, the number of retries of Con requests becomes 0
too. This guarantees a better execution of the protocol in a real scenario because of
the reduction in the number of messages in the network.

− Test 5 (H,I,J): In this test we perform some estimations of the appropriate TS
value. The result is that we get the best solution with a value of TS=50 seconds.

− Test 6 (K): In this test, we decrease the FTP value. The result is that we get un-
successful Con requests again, what proves that the most appropriate value for
FTP is 9000 key capacity.

Table 1: Result of the test

 Input variables
 NO NR C FTP TS RO RR
A 300 30 100 140 1/2min 20s 20s
B 300 30 450 140 3min 20s 20s
D 300 30 3500 3000 5min 20s 20s
E 300 30 4000 3000 20min 20s 20s
F 300 30 4000 3000 1h 20s 20s
G 300 30 1500 9000 30min 20s 20s
H 300 30 1500 9000 1min 20s 20s
I 300 30 1500 9000 1/2min 20s 20s
J 300 30 1500 9000 50s 20s 20s
K 300 30 1500 8000 1/2min 20s 20s
Output variables Timeouts
NM ERT CPC CPA CRO CRR SO SR UO UR ERT PKT

4712 10.67s 388 4895 3990 80388 3601 121540 1040 14011 10.67s 72.96s
4720 10.79s 869 0 3530 80502 4015 125108 679 10560 10.79s 54.77s
4628 4621 0 0 2220 7985 4220 133068 302 5200 10.75s 51.10s
4655 4652 0 0 2160 9239 4385 133461 254 4099 10.66s 50.40s
4593 4587 0 0 1990 6523 4387 132864 140 3732 10.72s 50.77s
4734 4733 0 0 0 0 4732 141930 0 0 10.62s 50.86s

4672 4669 0 0 0 0 4668 140041 0 0 10.75s 50.85s
4737 4734 0 0 0 0 4730 141916 3 74 10.75s 50.56s
4646 4641 0 0 0 0 4639 139140 0 0 10.85s 50.94s
4706 4703 0 0 12 378 4584 140498 70 412 10.77s 50.87s

We have used experimental values in order to avoid high time in the simulation
execution.

6 Conclusions and future works

It is widely known that the role of the TTP is essential for many Internet security
protocols. On the other hand, we know that most of non-repudiation protocols include

parameters whose values are not easy to specify, and some of those parameters are
directly related to the TTP. In a previous work we demonstrated how event-oriented
simulation can be considered as a tool to estimate the timeouts of non-repudiation
protocols.

In this work we have proposed an extension of the simulation model in order to es-
timate the appropriate values of the parameters for an efficient use of a TTP in non-
repudiation protocols. The model has been proved with some tests that have helped,
as we have shown throughout the paper, to estimate the most appropriate values for
the simulated parameters.

At this moment we are working on new tests for the simulation of optimistic non-
repudiation protocols, where taking into consideration the storage capacity of the TTP
is not an essential issue.

References

1. J. Zhou and D. Gollmann, “A fair non-repudiation protocol”, IEEE Symposium on
Research in Security and Privacy, pages 55-61, Oakland, CA, May 1996.

2. O. Markowitch, S. Kremer, “Optimistic non-repudiable information exchange”, In J.
Biemond, editor 21st Symp. On Information Theory in the Benelux, pages 139-146,
Wassenaar (NL), May 25-26 2000.

3. O. Markowitch and R. Yves, “Probabilistic non-repudiation without trusted third
party”, Second Conference on Security in Communication Networks. Amalfi, Italy,
September 1999.

4. M. Carbonell, J. Onieva, J. Lopez, J. Zhou, D. Galpert, “Simulation Model for the
Estimation of timeouts in non-repudiation protocols”, ICCSA Workshop on Internet
Communications Security, pages 903-914, LNCS 3043, May 2004.

5. O. Markowitch and S. Kremer, “A multi-party non-repudiation protocol”, Fifteenth
IFIP International Information Security Conference, pages 271-280, Beijing, China,
August 2000.

6. O. Markowitch and S. Kremer, “A multi-party optimistic non-repudiation protocol”,
Third International Conference on Information Security and Cryptology, pages 109-
122, Seoul, Korea, December, 2000.

7. J. Onieva, J. Zhou, and J. Lopez. “Non-repudiation Protocols for Multiple Entities”.
Computer Communications, 27(16):1608—1616, Elsevier, October 2004.

8. J. Onieva, J. Zhou, and J. Lopez and M. Carbonell. "Agent-Mediated Non-
repudiation Protocols". Electronic Commerce Research and Applications, 3(2):152--
162, Elsevier, Summer 2004.

http://www.elsevier.com/locate/comcom/

