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Abstract. Blockchain technology has significantly transformed various
industries by enabling secure and tamper-resistant transactions. How-
ever, the rise of quantum computing threatens the cryptographic foun-
dations of blockchain networks, making blockchain vulnerable to signa-
ture forgery and transaction manipulation. This raises concerns about
the long-term viability of blockchain systems and highlights the need for
post-quantum secure solutions.
This paper investigates the feasibility of quantum-resistant blockchain
ecosystems. Our research focuses on estimating the cost of the integration
of the post-quantum algorithms selected in the NIST standardization
competition into Ethereum-based blockchains.
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1 Introduction

In recent years, blockchain technology has emerged as a revolutionary technol-
ogy for secure and decentralized data management, largely due to its ability to
provide an immutable and transparent data ledger, which cannot be manipu-
lated. This technology has been adopted in various sectors, with finance being
the main application scenario, but also extending to supply chain management
and many others.

However, the advent of quantum computers poses a major threat to the foun-
dations of blockchain technology as they could undermine the security of cur-
rent cryptographic algorithms. Leveraging the principles of quantum mechanics,
quantum computers can perform a large number of calculations simultaneously
because their basic unit of information representation, the quantum bit or qubit,
can exist in a superposition of states. This allows multiple states to be repre-
sented at the same time, greatly facilitating efficient parallel processing [1].

As such, quantum computers are capable of solving complex mathematical
problems considerably faster than classical computers.

The potential of quantum computing is significantly enhanced by the ap-
plication of specific algorithms, such as Shor’s algorithm [2] for factoring large
numbers, and Grover’s algorithm [18] for speeding up searches in unstructured
data.
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These algorithms have direct implications for the security of current crypto-
graphic algorithms, especially public-key algorithms. For example, the security
of RSA is based on the impossibility of factoring large prime numbers, but with
Shor’s algorithm a 2048-bit RSA key could be factorized in approximately 8
hours using a quantum computer with 20 million qubits [13].

While this is a clear threat to security, the reality is that we are still far from
building quantum computers with this number of qubits. To the best of our
knowledge, the largest quantum computers to date have just over a thousand of
qubits. IBM’s Condor, for example, has 1.121 qubits [14]. On such a computer,
the factorization of the above mentioned RSA key would take approximately
142.204 hours, or about 5915 days. This value was obtained without differenti-
ating between physical and logical qubits, because otherwise the result would be
much higher [3].

Although quantum computers are not an immediate problem, the rapid de-
velopment of them in recent years, has led to the need for new cryptographic
algorithms that can withstand quantum computers. These new cryptographic
algorithms are referred to as post-quantum or quantum-resistant algorithms.

Since blockchains rely on public-key cryptography to operate, they are also
vulnerable to quantum computers. The main mechanism for interacting with
blockchains is through transactions, which are digitally signed to ensure their au-
thenticity. Most blockchains, including Bitcoin and Ethereum-based blockchains,
use the Elliptic Curve Digital Signature Algorithm (ECDSA) [15] for this pur-
pose. The main reason is that ECDSA uses short keys and produces short sig-
natures.

In this paper we investigate the threat that quantum computers pose to block-
chain systems and whether post-quantum cryptography (PQC) can be integrated
into Ethereum-based blockchains to mitigate the risk. The main contribution of
this paper is a performance comparison of the PQC algorithms selected from the
NIST standarization process against ECDSA using real-time transaction data.
It has been focused only on the ECDSA signature algorithm used to sign the
Ethereum transactions, not in the BLS signature. The reason for this has been
because replacing BLS is much more changeling given that Ethereum consensus
uses BLS signature aggregation to store the results of the consensus voting. In
the end, the solution has been composed of a modular and scalable system for
acquiring, comparing and visualizing the results.

The rest of this paper is organized as follows. Section 2 provides a comparative
analysis with related works. Next, Section 3 introduces the main existing post
quantum cryptography families. The benchmarking architecture is described in
Section 4. Subsequently, Section 5 shows the results obtained from the evaluation
of applying ECDSA and NIST selected algorithms to real-time transaction data
from an actual blockchain network. Finally, Section 6 present the conclusion and
outlines potential lines of future research.
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2 Related work

Concerns about the threat of quantum computers to current cryptographic
schemes have led to notable research in this area, generating several solutions
and surveys.

Regarding survey papers, Buser et al. [4] focus on exotic signature schemes
for post-quantum blockchains, exploring the challenges associated with their im-
plementation and proposing research directions. More recently, Yang et al. [21]
presented a comprehensive survey and comparison of post-quantum and quan-
tum blockchains, which highlighted the current state of research and identifying
possible future directions.

Some papers focus on investigating the application of post-quantum blockchains
to particular scenarios. For example, Chen et al. [5] concentrate on studying the
practical implications of integrating post-quantum cryptographic schemes into
blockchain systems designed for the Internet of Things (IoT) and other smart city
infrastructures. Similarly, Yi et al. [22], discuss the application of post-quantum
blockchain technology to secure the social Internet of Things (SIoT), proposing
a framework that leverages post-quantum cryptography to ensure data integrity
and privacy in these scenarios.

Additionally, some authors proposed the use of lattice-based cryptography to
make blockchain networks resistant to quantum attacks. The focus of [11] is the
creation of a cryptocurrency based on a post-quantum blockchain while [16] pro-
poses a new signature scheme and describes how to apply it to secure blockchain
transactions. None of them present a practical implementation.

To the best of our knowledge, the paper that is most similar to ours is [9]. This
paper analyses the feasibility of post-quantum algorithms for the blockchain.
However, their study does not use the finalists of the PQC competition organized
by NIST. Furthermore, their evaluation is not done with real blockchain data.

In contrast, in this paper we provide a modular and scalable tool to facilitate
the incorporation of novel post-quantum algorithms as they are developed. In
addition, our solution uses real-time transaction data from a blockchain network,
making the evaluation results more accurate.

3 Post-quantum cryptography families

The threat of quantum computing to today’s cryptographic schemes has prompted
the US National Institute of Standards and Technology (NIST) to launch a stan-
dardization process for post-quantum schemes, which aims to develop and stan-
dardize cryptographic algorithms that are resistant to quantum attacks [17]. The
competition started in 2016 with 69 candidate algorithms and has progressed
through rounds of evaluation. The candidates algorithms can be classified into
different families, which are briefly described below.

Lattice-based cryptography relies on the mathematical properties of lat-
tices, geometric structures formed by points in n-dimensional space. It involves
solving problems such as the Shortest Vector Problem (SVP) and the Closest
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Vector Problem (CVP) in these high-dimensional spaces, making brute-force at-
tacks impractical. Lattices are often represented as arrays for easier matrix oper-
ations. The main cryptographic schemes include NTRUEncrypt and NTRUSign,
which leverage SVP and CVP, and Ring-LWE-based schemes, which use the Ring
Learning with Errors (RLWE) problem to perform computations on polynomial
rings.

Code-based cryptography is one of the oldest and most studied ap-
proaches to post-quantum cryptography. Its security is based on the difficulty of
solving the mathematical problems associated with error-correcting codes. These
codes ensure reliable data transmission over noisy channels by introducing re-
dundancy, which allows the receiver to detect and correct errors, while attackers
without secret knowledge cannot decode the data. The McEliece cryptosystem,
created in 1978, is the most famous code-based algorithm. It encrypts messages
by encoding them in codewords and adding random errors to make decryption
impossible without the private key. Although efficient and secure, the McEliece
cryptosystem has large public keys and computationally intensive key generation
and management processes.

Multivariate polynomial-based cryptography (MPKC) is a crypto-
graphic scheme that exploits the hardness of solving systems of multivariate
polynomial equations, which are computationally very difficult to solve, and have
been proven to be NP-Complete, like some other lattice or code problems. These
problems are of complexity class NP (non-deterministic polynomial time), which
means that if a polynomial-time algorithm exists for solving any NP-complete
problem, then polynomial-time algorithms exist for solving all problems in NP,
making them essentially equivalent in difficulty.

Hash-based cryptography is a method of encrypting and securing data
using hash functions. Before the process begins, it is necessary to determine
which values are to be signed, and then to generate a long random string of
characters for each of them. This resulting random string will be the private
key used to sign the data. Once the private key is ready, this string is hashed
using typical hash functions such as SHA-1, SHA-3, SHA-256 or BLAKE2, which
produce strings between 256 and 512 bits, which are used as public keys to
verify the signature. This is done by hashing the signature (the private key) and
comparing it with the public key it has.

Isogeny-based cryptography creates cryptographic systems over finite
fields using isogeny graphs of elliptic curves, which are mappings that preserve
algebraic structures. An isogeny is a morphism between two elliptic curves, char-
acterized by its homomorphism between the groups of points on the curves. Key
generation involves choosing two elliptic curves over a finite field and generating
a secret isogeny between them. The private key is the isogeny, while the public
key is made of the starting and resulting curves. While the Supersingular Isogeny
Diffie-Hellman (SIDH) protocol and its successor, Supersingular Isogeny Key En-
capsulation (SIKE), were initially prominent, they have been found vulnerable
to cryptographic attacks. As a result, newer isogeny-based schemes like SQISign
and its variants have emerged. SQISign, which has been featured in recent NIST
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post-quantum cryptography evaluations, represents a more robust approach, ad-
dressing the vulnerabilities of earlier protocols and offering promising security
in the evolving landscape of post-quantum cryptography.

4 Benchmarking solution

This section describes the benchmarking tool developed to evaluate the perfor-
mance of both current and post-quantum cryptographic algorithms in block-
chain.

The tool consists of a set of interconnected functional blocks that result in a
modular and scalable environment for the evaluation of cryptographic algorithms
against real-time transactions from an Ethereum-based blockchain. The tool also
provides an interface for the visualization and analysis of the results.

In the following, we present the overall architecture of the benchmarking
solution and its building blocks in detail.

4.1 System architecture

The proposed solution consists of four main components as illustrated in Fig-
ure 1. The first component is devoted to the deployment of a blockchain network.
The second component provides all necessary cryptographic algorithms, which
will be applied to actual blockchain data in the third component. The fourth
component provides a mechanism to display the results.

Fig. 1: Benchmarking solution architecture

As shown in the figure, our solution incorporates an actual blockchain net-
work capable of deploying and running a number of Go-Ethereum nodes using a
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Docker environment. All transactions sent in the blockchain environment are
intercepted and their actual payloads are passed to our benchmarking API.
The benchmarking component evaluates the performance of both the crypto-
graphic algorithms currently provided by the Go-Ethereum client and the post-
quantum cryptographic schemes selected by NIST. The results are stored in
a Sqlite database that is read by Grafana, the component in charge of gener-
ating graphics for comparing the evaluation results. These graphics are finally
included in a web application developed with Flask to facilitate the visualization
and analysis of the results.

4.2 Cryptographic component

This section presents the cryptographic algorithms and libraries incorporated
in our benchmarking solution. Currently, it includes the three post-quantum
signature algorithms selected by NIST after their standardization competition:

– CRYSTALS-Dilithium [7]: Dilithium is a digital signature algorithm based
on the hardness of lattice problems over module lattices. It ensures that even
with access to a signing oracle, an adversary cannot fabricate a new signa-
ture for an unsigned message or a different signature for an already signed
message. Dilithium utilizes rejection sampling of Fiat-Shamir with Aborts
and the uniform distribution for signature generation, leading to secure yet
larger signatures. Despite this, its key size is reduced post-creation with an
optimizaiton process, making it the algorithm with the smallest combined
public key and signature size among lattice-based schemes. Dilithium offers
three modes (Dilithium 2, 3, and 5), with increasing security and resource
needs, and includes AES encryption.
As there is a library that implements this algorithm in GO [6], the necessary
test functions have been included directly in the simulation program that
has been carried out in GO.

– Falcon [10]: As Dilithium, it is a lattice-based digital signature scheme, but
uses the Gentry, Peikert, and Vaikuntanathan framework [12], deploying
NTRU lattices with a fast Fourier sampling trapdoor sampler. This scheme
addresses the short integer solution (SIS) problem over NTRU lattices, which
remains computationally challenging even for quantum computers. Falcon
offers two modes, Falcon-512 and Falcon-1024, with this benchmark focusing
on Falcon-1024 due to its higher security.
To implement of Falcon, since there is currently no native library for GO, it
was necessary to use the CGO library to combine C and GO code, calling
Falcon cryptographic functions from C [19] for analysis in GO.

– SPHINCS+ [20]: Stateless hash-based digital signature scheme using Merkle
tree structures. It offers high security with relatively short signatures and fast
verification times. SPHINCS+ includes three variants based on the underly-
ing hash functions: SHAKE256, SHA-256, and Haraka, with this benchmark
focusing on SHA-256.



Benchmarking post-quantum cryptography in Ethereum-based blockchains 7

The GO library for SPHINCS+ [8] supports 12 modes per hashing method,
varying in hash length (128, 192, 256) and mode type (simple, robust). In
this case, six modes have been analyzed, covering both simple and robust
options for each hashing type.

Although this component only incorporates libraries for the three finalists of
the NIST competition, it is designed to facilitate the inclusion of new crypto-
graphic algorithms in the future.

4.3 Measurement component

The measurement component is one of the core elements of the proposed solution.
This component is responsible for receiving, in real time, the transactions of all
blocks generated by the Ethereum-based blockchain.

Every time a signature is generated or verified in the blockchain network, an
API call is made with the hash of the transaction. This hash is then used as
payload to perform the comparisons of cryptographic functions.

The tests, which are performed in every single API call, simulate a key gen-
eration, signature generation and signature verification process. These tests are
first carried out with the cryptographic code extracted from Go-Ethereum, i.e.
with ECDSA, and then compared with the post-quantum cryptographic schemes
explained above: Dilithium, Falcon and SPHINCS+.

The metrics measured have been the execution time and the memory us-
age of the corresponding cryptographic function. All measurements have been
carried out directly from GO, with native libraries: time for time measurement
and runtime/pprof for CPU profiling. Both are started just before calling the
function to which the parameters are going to be measured.

However, instead of measuring the time directly in the blockchain node, we
produce also an ECDSA signature in the backend to ensure that all benchmarked
algorithms are run in the same environment. As the backend does not know the
private keys used for signatures, we need to generate a new pair in each test
iteration. In addition to that, key and signature sizes have also been measured
apart from the tests.

Execution times The simulations have been carried out several times in a loop
and the average execution time of all of them has been calculated, since there
have been functions that took extremely low time that were considered as 0ms
by the measurement function. This loop was 50 times for the tests performed by
API call.

However, the need to perform iterations to obtain more accurate results,
increased considerably the time required to complete each test. This has caused
another problem, which was that API calls were being received with new block
information, while tests were still running with hashes from previous blocks. In
short, it took longer for the GO program test to complete than for the private
network to validate a new block.
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Therefore, it has been essential to implement asynchronous calls in the block-
chain network, so that it has not need to wait for the API response and continues
its normal operation. At the same time, and more importantly, a queuing system
has had to be implemented in the GO program. This has been achieved using
GO channels and GO routines. When the application launches, the channel is
initialized and a GO routine is started to handle incoming requests. Then for
each API call received, the hash information has been added to the channel
queue, to be executed one at a time on a first-come, first-served basis.

Memory usage In addition to measuring the execution time of cryptographic
functions, in order to assess whether an algorithm is suitable or not, it has
been very interesting to quantify the memory usage during executions. For this
purpose, four metrics have been evaluated:

– Alloc: Amount of memory allocated by the Go runtime for live objects, in-
cluding all reachable objects in the heap, as well as some additional memory
used by the garbage collector and other runtime structures.

– Total alloc: Cumulative amount of memory allocated since the program
started. It covers all allocations, even those that have been freed by the
garbage collector.

– Sys: Total memory obtained from the operating system, including both the
Go heap and any memory allocated by the Go runtime for other purposes
(such as stack space, memory-mapped files, and so on).

– Num GC: Number of garbage collection cycles that have occurred since
the program started. Garbage collection is the process of reclaiming memory
that is no longer in use by the program, and each cycle involves scanning
the heap to identify and free unreachable objects.

5 Experimental results

The test results have been divided into three parts: the key and signature sizes,
and the execution times and memory usage of the functions under test.

5.1 Key and signature sizes

Table 1 shows the comparison of private and public key and signature sizes for
each type of cryptographic algorithm. It is worth mentioning that the size of the
public key is only the size of the key itself, which in reality would have to be
added 1 bit for the signature of the y-coordinate.

Comparing the key sizes of the various cryptographic schemes, there have
been notable differences that reflect their security objectives and underlying algo-
rithms. The best values have been obtained by ECDSA and 128-bit SPHINCS+,
which with the sum of the public and private key sizes achieve the same size.
ECDSA has a 64-byte public key and a 32-byte private key, while SPHINCS+

has a 32-byte public key and a 64-byte private key.
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Table 1: Key and signature sizes of different algorithms
Algorithm Public key Private key Signature
ECDSA 64 32 64
Dilithium2 1312 2528 2420
Dilithium3 1952 4000 3293
Dilithium5 2592 4864 4595
Falcon 1024 1793 2305 1231
SPHINCS+ SHA256 128bit - Robust 32 64 17088
SPHINCS+ SHA256 192bit - Robust 48 96 35664
SPHINCS+ SHA256 256bit - Robust 64 128 49856

In any case, although ECDSA could be considered the best in this aspect, it
should be noted that the set of all SPHINCS+ schemes have values very close
to ECDSA and therefore, values that could be competitive to it in this aspect.
Among SPHINCS+ versions, the higher the security level, the more bits are used
and therefore, the key sizes increase. However, using the simplest version, the
128 bit one, it is possible to use the same key sizes as ECDSA.

In contrast, both Dilithium and Falcon have been excessively far from the
ECDSA or SPHINCS+ key size values. They should be used in scenarios where
security is paramount and large key size is not an issue.

In case of the signatures, it can be seen that the result changes radically
compared to the key sizes comparison. Although ECDSA has still been the best,
SPHINCS+, which for the keys was the second best option, becomes the worst
with a huge difference with the rest.

In this case, the second best option has been Falcon 1024. However, the size
have fallen far above of the ECDSA signature size, since the size of a Falcon
1024 signature is equivalent to just over 19 ECDSA signatures.

The size of the signatures generated using Dilithium has also turned out to
be considerably larger, doubling the size of Falcon 1024 using Dilithium2, and
more than tripling if Dilithium5 is employed.

In general, it can be concluded that there is no scheme that globally (adding
the three sizes) comes close to ECDSA, since the second best is Falcon and
exceeds it by 33 times. Especially analyzing the sizes of the signatures, it can be
clearly stated that all post-quantum schemes are extremely far from the ECDSA
values. However, SPHINCS+, in the aspect of the keys obtains a very good result,
being even better in the size of the public keys and not much worse in the private
ones. In any case, it is clear that using these algorithms, the increase in the size
of the keys and especially of the signatures is an inevitable consequence of the
improvement in security they offer.

5.2 Execution times

One of the most important factors when choosing one cryptographic algorithm
over another is the time required for the algorithm to execute the cryptographic
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functions. Therefore, much emphasis has been placed on measuring and analyz-
ing in a precise and detailed way the execution times required by each crypto-
graphic scheme.

The final average results after more than 24 hours of running the blockchain
network have been those summarized in the Table 2 and also visible in the
historical data dashboards of the project.

Table 2: Average execution times by algorithms (ms)
Algorithm Key

generation
Signature
generation

Signature
verification

ECDSA 90.7 58.6 71.4
Dilithium2 80.5 149 17.3
Dilithium2-AES 102 124 16.5
Dilithium3 144 222 22.7
Dilithium3-AES 171 191 19.5
Dilithium5 201 251 33.6
Dilithium5-AES 254 207 29.6
Falcon 1024 90434 13162 166
SPHINCS+ SHA256 128bit - Robust 5612 120583 7845
SPHINCS+ SHA256 128bit - Simple 3376 72760 4569
SPHINCS+ SHA256 192bit - Robust 8318 198359 11856
SPHINCS+ SHA256 192bit - Simple 4977 118773 6777
SPHINCS+ SHA256 256bit - Robust 26333 483158 14568
SPHINCS+ SHA256 256bit - Simple 13074 240571 6957

Firstly, evaluating the differences in key generation times, it can be con-
cluded that there have been two algorithms that clearly stand out above the
rest: ECDSA and Dilithium2 (both in its normal version and in the AES version,
which hardly varies). However, it should be noted that all versions of Dilithium
have a relatively good execution time that did not deviate that much from the
ECDSA times. In fact, the Dilithium2 version improves on the ECDSA result
and achieves the shortest execution time of all the algorithms. However, both
SPHINCS+, in all its versions, and Falcon, differ exaggeratedly compared to the
times of the rest, especially the latter.

Secondly, evaluating the signature generation times, there is no doubt that
ECDSA is clearly above the rest of the algorithms, as it is slightly more than
twice as fast as the second, Dilithium2-AES. Unlike the key generation, in this
section Falcon 1024 (224 times the ECDSA time) has obtained a better result
than SPHINCS+ (2057 times the ECDSA time in the simplest mode), but they
are still times that are not at all competitive compared to the times of ECDSA
or even Dilithium.

However, at this point it must be taken into account the large difference that
existed between the signature size of ECDSA and the signature sizes of the post-
quantum algorithms, which greatly influences the time of signature generation.
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Finally, as far as signature verification times are concerned, it is interesting
to note that ECDSA did not obtain the best score on this point, being clearly
outperformed by Dilithium in all its versions.

Dilithium2 has been more than four times faster than ECDSA, and Dilithium5,
the version with the highest level of security, 2.1 times faster too. Falcon 1024,
on the other hand, although it has been more than twice as slow as ECDSA, was
not far behind. SPHINCS+, in all its modes, has been the scheme that took an
exorbitant amount of time compared to the rest, being 47.3 times slower than
Falcon 1024 for example (128bits robust mode). However, although it is not a
very considerable difference, a clear difference in times could be observed when
using the robust or simple mode of SPHINCS+, regardless of the number of bits
used.

Summarizing the results, on the one hand, in key generation, Dilithium ob-
tains a result very close to ECDSA, even improving its time in its Dilithium2
version. The rest of the algorithms need an extremely higher time and are not
competitive at all. The same happens in the generation of signatures, although
in this case Dilithium does not improve the time of ECDSA in any version, it
is very close. The worst here is SPHINCS+, while Falcon improves compared
to key generation. The most remarkable thing happens in signature verification,
where Dilithium is exceptionally better than the rest, including ECDSA, being
between 2.1 and 4.1 times faster than ECDSA depending on the versions used.

Therefore, in the sum of all times, it can be concluded that Dilithium needs
a similar amount of time as ECDSA, being practically the same time in the
Dilithium2 version. Comparing it with the rest of the post-quantum schemes, it
obtains an excellent result, being the only one that could compete in this aspect
with the current cryptographic methods.

5.3 Memory usage

In addition to measuring the execution time of cryptographic functions, in order
to assess whether an algorithm is suitable or not, it has been very interesting
to quantify the memory usage during executions. Nevertheless, obtained results
have not been as interesting and analyzable as those of the execution time, which
has led to more extensive conclusions.

The values of total alloc, sys and num GC, have concluded to be very similar
between all the executions of the different algorithms in each test. The metric of
interest for the analysis has been the alloc, the amount of memory allocated by
the Go runtime for live objects, which has led to detect greater variation among
the different algorithms.

First, in the memory allocation levels of the key generation, a clear differ-
ence has been observed between ECDSA and Falcon compared to Dilithium and
SPHINCS+. Although ECDSA achieved the lowest result, it is less than 1% bet-
ter than Falcon, which is a negligible difference. The difference to consider exists
when compared to the other two post-quantum algorithms, which need about
55-60% more memory than the first two.
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Next, the results of the same metric have been analyzed for the signature
generation process, and it was observed that in this aspect, Dilithium improves
and approaches the values of ECDSA and Falcon, which are still slightly better
in that order. SPHINCS+, on the other hand, still requires about 50% more
memory compared to the other three algorithms.

Finally, signature verification follows the same pattern as signature genera-
tion, with all the algorithms being quite close to each other, except SPHINCS,
which continues with much higher values. However, in this case, it can be seen
that there is a notable difference between the different modes that has SPHINCS.
The robust 192-bit mode gives the best result, while curiously, the simple mode
of the same bits is the one that gives the worst result of all, surpassing it by just
over 10%. The rest of the algorithms are in between, but except for the 128-bit
one, in the other two, it is the simple mode which needs less allocated memory
than the robust mode.

6 Conclusions and future work

One of the main conclusions was obtained during the research and study process.
At present, quantum computers are still a long way from being able to break
current encryption schemes easily and quickly. Current quantum computers are
not necessarily large enough to break the schemes fast, nor are they anywhere
near the size needed at the moment.

The test execution times have been where the most interesting information
has been extracted, especially because a similar performance has been seen be-
tween ECDSA and Dilithium, and a huge difference has been observed with the
other two analyzed schemes.

Analyzing the memory usage, it can be said that even though there is a
difference between the schemes, it is not as big as in the case of the execution
times. Falcon equals ECDSA in terms of results, followed by Dilithium, which
needs more resources in key generation, but in the other two processes it is
practically the same as ECDSA. However, SPHINCS+ does require slightly more
memory in all processes.

In summary, analyzing all the results, it can be clearly concluded that in
terms of performance, Dilithium is currently the best post-quantum crypto-
graphic scheme, being quite close to the performance levels of ECDSA, which
has been the present scheme used as a comparison. In the case of the simplest
version of Dilithium (Dilithium2), summing all the values of time and memory,
it would only need 12% more execution time in the three processes evaluated
and 20% more memory. These values, which although on a large scale could
make a considerable difference, are values that are not too far off current levels.
Therefore, the increase in security level that the integration of this algorithm
could entail, could be totally understandable in exchange for the slight decrease
in performance.

From the results presented and also during the development, new ideas, ques-
tions and improvements have arisen, which will be detailed below.
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The main point for improvement would be to integrate the post-quantum
cryptographic methods used in the tests into the blockchain network directly,
i.e. to include them into the source code of the used Ethereum client, in this
case Go-Ethereum. This way, more detailed tests could be performed, with real
transactions, enabling the analysis of more factors such as network load for
example. It would be possible to analyze the behavior of the methods in a real
network, including latency, node distribution, volume of transactions...

Secondly, while current tests only include post-quantum digital signature
algorithms selected by NIST, many other post-quantum algorithms could be
tested in the future.

Finally, current tests were performed on a local computer with its own compu-
tational limitations and concurrent processes, which might affect results. Moving
the system to an external server dedicated to testing, free from other tasks, would
provide more accurate performance measurements. Additionally, creating a net-
work of multiple systems to run the same tests and share a common database
would allow for calculating average values across different systems, offering a
broader perspective on performance results.
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