
1

Towards a framework for cost-effective and publicly
verifiable confidential computations in blockchain

Daniel Morales, Isaac Agudo, Javier Lopez

Abstract—Blockchain technologies have introduced a com-
pelling paradigm for a new understanding of security through
decentralized networks and consensus mechanisms. However,
they need all data to be public, which may be unacceptable for
use cases such as biometric data processing or sensitive monetary
transactions. Therefore, confidentiality is identified as a need in
blockchain. Additionally, blockchain can contribute to confiden-
tial applications by providing publicly verifiable mechanisms,
therefore enhancing security.

This work presents a framework for cost-effective and publicly
verifiable confidential computations in blockchain, by relying
on Secure Multi-Party Computation committees and Zero-
Knowledge Proofs. Our framework supports arbitrary computa-
tions on confidential data enforced by Smart Contracts. Addition-
ally, staking, incentives, and cheat identification are provided as
solutions to enhance trust. We also provide a technical solution to
embed Secure Multi-Party Computations within Smart Contracts
by using the Promise programming pattern.

Finally, a cost analysis is provided to justify the feasibility of
the framework compared to other solutions.

Index Terms—Privacy, Confidentiality, Blockchain, Secure
Multi-Party Computation.

I. INTRODUCTION

Blockchain technologies have introduced a compelling
paradigm for a new understanding of security through de-
centralized networks and consensus mechanisms. In public
blockchains, such as Bitcoin or Ethereum, it requires an
unmanageable effort for a malicious actor to be able to
manipulate the blockchain data. Apart from the original use
case, which is digital money using cryptocurrencies, different
use cases have been proposed for the blockchain ecosystem, in
areas such as healthcare or insurance [11]. The main enabler
has been Decentralized Applications (DApps) through Smart
Contracts (SCs), which are code instructions executed by any
node in the blockchain network. Trust in blockchain is mainly
achieved by replicated storage and public verifiability, but this
implies keeping all data public, which may be unacceptable
for use cases such as biometric data processing or sensitive
monetary transactions.

Privacy, and more specifically confidentiality, are a need for
widespread blockchain acceptance [12]. Additionally, public
blockchains contribute to confidential applications with public
verifiability, which enhances trust and security, contrary to pri-
vate blockchains where public verifiability is more challenging
due to their centralized and opaque nature. Although encrypted
data can be naively stored in the blockchain and accessed by
users, the challenge is using it through confidential computing,

The authors are with the University of Malaga, Spain.

enabling DApps to interact with ciphertexts (without decrypt-
ing it), and disclosing nothing but the computation results.
Cryptographic technologies such as Zero-Knowledge Proofs
(ZKPs) or Secure Multi-Party Computation (MPC) enable this
paradigm of confidential verifiable computations, with appli-
cations such as threshold cryptography, secure lotteries, or
confidential voting. In such applications, it is useful to provide
transparency and traceability in the logic and operations that
are being computed, in addition to the result verification.
However, there are pieces of information that must be kept
and computed privately. Therefore, confidential computing in
public blockchains enables the best of the two worlds.

Although delegating confidential computing to the cloud
may appear as a more straightforward and light solution,
it presents some issues. First, even when using MPC, the
cloud implies a centralization of the management capabilities,
which could violate privacy. Second, the externalization of
functionalities from the blockchain to the cloud can lead
to additional vulnerabilities which cannot be mitigated by
decentralized capabilities.

In this work, we propose a framework to achieve cost-
effective and publicly verifiable confidential computations in
public blockchains. More specifically, our contributions are as
follows.

First, a blockchain architecture design that enables confiden-
tial computations fully embedded in the blockchain. A pool of
special nodes, namely MPC nodes, assumes the responsibility
of computing on confidential data in return for a fee. Our
model is hybrid, which means that computations are securely
performed off-chain and verified on-chain, hence minimizing
the cost of the fee. More specifically, our solution employs
MPC based on Homomorphic Secret Sharing (HSS) to ensure
that the MPC nodes can learn nothing from the users’ inputs
and on Non-Interactive ZKPs (NI-ZKPs) to enable public
verifiability by any blockchain node.

Second, an SC and staking-based solution that enables the
blockchain to control, in a decentralized manner, the MPC
nodes available and their identities, while also discouraging
them from misbehaving on the computations to be performed.

Finally, a technical solution to embed MPC functions,
understood as delegated asynchronous processes, into the exe-
cution of SCs, understood as sequential and atomic operations.
More specifically, we incorporate the promise pattern for
asynchronous data into SCs, which is widely accepted in
centralized programming paradigms. This approach enables a
general-purpose programming tool for confidential computa-
tion descriptions in a highly transparent way for users.

The rest of the paper is organized as follows. The next

D. Morales and I. Agudo and J. Lopez, “Toward a Framework for Cost-Effective and Publicly Verifiable Confidential Computations in Blockchain”,
IEEE Communications Magazine, In press.
http://doi.org/10.1109/MCOM.001.2300839
NICS Lab. Publications: https://www.nics.uma.es/publications



2

section presents some work that has been proposed for con-
fidential computations in blockchain. Next, we introduce the
different building blocks that enable confidential computations
through MPC. The following section presents a framework for
confidential computations in public blockchains using HSS-
based MPC and SCs, together with a technical solution to
embed MPC in SCs using the promise asynchronous pattern.
Next, we describe the main threats and how to address them,
and we provide an evaluation of the solution based on cost
analysis. The final section presents conclusions and future
work.

II. RELATED WORK

This sections introduces some works that target confiden-
tiality in blockchain.

A naive solution is provided by Hyperledger Besu and Fab-
ric projects for permissioned blockchains, where a confidential
transaction can only be accessed by a specific subgroup of
the blockchain. However, this solution does not provide fine-
grained confidentiality, since it just segment the blockchain in
subgroups.

Some authors have already tried to solve this problem using
TEEs, but due to the inherent complexity of these technologies
they still recur to MPC to solve some critical aspects of
the proposal. For example, in [3], authors propose a TEE
approach but still require an MPC protocol to implement key
management.

In the Ethereum world, the work in [4] employs Fully
Homomorphic Encryption (FHE) to allow fully on-chain com-
putations using ciphertexts which can be evaluated within
the Ethereum Virtual Machine (EVM) without exposing the
plaintexts. However, it presents two issues: FHE is costly,
therefore expensive when performed on-chain, and it also
needs MPC for key management.

The work in [2] introduced a new line of research that allows
proactive committees in a blockchain to handle confidential
data using HSS. However, it assumes all communications to be
performed on-chain, and barely introduces how computations
are performed. In fact, it assumes a model where a single
gate operation is computed per committee handover, incurring
a large number of transactions and delays. A recent work [7]
proposes a similar model based on roles that just send a single
message before finishing their task. However, it focuses on
the theoretical protocol design, instead of the role-assignment.
Finally, the work in [1] proposes a Blockchain-based MPC
communication model, however it relies on a specific protocol
in Algorand, so it is not adaptable to other blockchains.

III. CRYPTOGRAPHIC TECHNOLOGIES FOR
CONFIDENTIALITY

MPC [6] is a theoretical problem that involves a set of
parties who wish to jointly compute a function on their
private inputs without disclosing anything other than the
output. MPC solutions have been applied to use cases such
as secure auctions, ad conversion rates, privacy-preserving
machine learning, or blockchain-enforced access control [13].
MPC solutions must ensure privacy, correctness, and fairness,

EncA(a)

EncA(b)

EncA(f(a,b))

f()

EncA(a)

EncA(b)

EncA(f(a,b))

Cloud

EncA(a)

EncA(f(a,b))

f()

EncA(a)

EncA(b)

EncA(f(a,b))

Cloud

EncA(b)

Alice's public key Alice's public key
Alice's private key

Alice's public key
Alice's private key

Fig. 1: Confidential computing in a cloud setting using FHE.
Left: Single-user scenario. Right: Multi-user “naive” solution.

meaning that the inputs are not revealed, and the output of
the computation is guaranteed to be correct and is forced to
be disclosed to all parties. These properties can be enforced
by different assumptions, depending on the technology used
to solve MPC.

Our solution is based solely on HSS and NI-ZKPs. The
following lines briefly explain why the other technologies are
not considered. First, Garbled Circuit (GC) solutions are rather
old and inefficient compared to the others. Application Specific
Protocols (ASPs) are designed to solve specific MPC sub-
problems, and may not be suitable for arbitrary computations
specified by users, which is the focus of this paper. As for
TEEs, they rely on specialized hardware to isolate data from
the host. Despite they can handle private SCs easily [3],
they present limitations in key management, need attestation
procedures to ensure security, and relying on specialized
hardware can limit the number of available nodes for privacy.
Finally, FHE allows computing directly on ciphertexts [10]
without the need to expose the plaintexts. This implies a
very straightforward solution to blockchain, as proposed in
[4], since each node can compute SC functions on ciphertexts
without exposing any data. However, the existing problems
are twofold. First, FHE is very expensive, not only in terms
of computation, but also in terms of ciphertext length, which
results in rather high transaction processing and storage cost.
Second, as shown in Figure 1, FHE presents difficulties in
handling keys in a setting with multiple data providers. In
the left picture, Alice is the only one with access to her
confidential inputs and the encrypted result, which is computed
blindly by the cloud. In the right picture, however, there are
two data providers but a single decryption key. This is because
it is mandatory that all ciphertexts entering a computation
are encrypted with the same public key. Therefore, in this
particular example, Alice can access Bob’s data. Typical
solutions such as [4] rely on HSS-based MPC in the last mile



3

Validation nodes Users

registration

fee

payment

MPC transaction

enforcement

new

blocks

MPC nodes

private

data

public

data

consensus

App

contract

Blockchain

Blockchain
API

MPC transactionMPC output + proof

committee selection

Blockchain nodes
MPC


description
contract

updates

private inputs

MPC

contract

Fig. 2: A framework for HSS-based MPC confidential computing in a public blockchain. Remark: Users interact with the SCs
through the blockchain nodes and with the MPC nodes through off-chain confidential channels such as TLS.

to decentralize decryption rights.

A. Non-Interactive Zero-Knowledge Proofs

NI-ZKPs [8] have been largely misunderstood regarding
their use in blockchain. Essentially, a ZKP allows a prover
to convince a verifier that a given statement is true when
computed on data unknown to the verifier. NI-ZKPs allow the
prover to send a single proof message to the verifier, allowing
SCs to act as verifiers. Although originally proposed for
confidential applications, NI-ZKPs require that all data reside
on the prover’s side. This limits their use to settings where the
proven data is owned by a single user, thus precluding MPC.
NI-ZKPs have been used extensively in blockchain layer 2
solutions, but for the sake of conciseness, not confidentiality.
This work relies on a variant called multi-prover NI-ZKP [14],
which allows a set of provers with disjoint secrets to compute a
single NI-ZKP. Thus, it allows to obtain a proof of correctness
in an MPC without revealing the inputs.

B. Homomorphic Secret Sharing

A Secret Sharing (SS) scheme allows a dealer to share a
secret with a set of holders, giving each holder a specific share
of the secret that does not reveal anything on its own. Privacy
is guaranteed such that a sufficient number of shares must be
gathered to reveal the original secret. A Homomorphic Secret
Sharing (HSS) scheme allows operations to be performed on
the shares, which are automatically applied to the original
secret once it is revealed.

HSS remains the most popular building block for general-
purpose MPC protocols [5]. The most popular schemes rely
on additive shares, where sum reveals the secret, or on
polynomial shares, where interpolation reveals the secret. Both
schemes allow addition to be applied directly to the shares, but
multiplication requires an extra round of communication.

In this work, HSS-based MPC is chosen as the main
building block for confidential computing for the following
reasons. First, it is software-based, making it more flexible
and easier to deploy than TEE, facilitating the deployment of
a large pool of MPC nodes. Second, it is more computationally
efficient than solutions such as FHE. Since the computational
cost is the main determinant of the price of SC operations,

minimizing it leads to a cost-effective solution. Conversely,
HSS requires more communication over the network, which is
its main bottleneck. However, since blockchain is not intended
for high-volume operations, this limitation is acceptable in
exchange for reducing the computational price. Finally, it
remains as a solution for some procedures which are difficult
in TEE or FHE approaches such as key management and
handling multiple input providers.

IV. BLOCKCHAIN CONFIDENTIAL COMPUTING: A
FRAMEWORK

This section describes a framework for publicly verifiable
delegated computation in the blockchain that supports both
public and confidential computation, transparent to users,
based on interactive HSS-based MPC protocols. The frame-
work is intended to be cost-effective, so it uses a hybrid
approach to minimize on-chain costs. More specifically, while
the computation itself is performed off-chain, the framework
provides strong on-chain anchor points.

This solution is delegated because the users providing the
inputs (public or private) do not participate in the computa-
tion at all, thus saving resources and avoiding the complex
deployment of MPC capabilities. The framework also targets
governance, which means that users can control the use of
their confidential data through SCs, thus enabling a highly
programmable environment. Finally, privacy and correctness
mean that confidential data are not exposed, and the com-
putational results are not manipulated. MPC guarantees both
as long as enough nodes remain honest. In addition, the NI-
ZKP generated by the MPC nodes allows public verification of
the correctness of the computation, thus preventing incorrect
updates even from malicious nodes.

A. General architecture

Figure 2 shows the general architecture of the framework,
with each component described below.

Users: Individuals who wish to benefit from the blockchain
services by delegating and/or consuming computations. These
computations may contain public data, confidential data, or
both. Users do not participate in consensus and do not store the
blockchain state. They must pay fees for the computation to be



4

User MPC
contract

MPC
committee

App
contract

Blockchain
nodes

Validation
nodes

1a. Register
1b. Get committee

2a. Deploy smart contract

2b. New block2c. New

contract

3a. Call MPC function

3b. Send secret shares
3c. Contract update

3d. New block

4a. Notify MPC

4b. Compute

MPC

5a. Resolve MPC + proof
5b. Contract update

5c. New block
5d. MPC resolved

3e. Escrow MPC fee

5e. Pay fee

Fig. 3: Sequence diagram of the workflow to register an MPC committee on-chain and delegate to it a confidential computation.

performed, of which a portion is for the blockchain validator
and another for the MPC nodes involved, if necessary.

MPC nodes: A pool of nodes from which committees are
formed. Each committee can hold the secret data owned by
the users and compute the functionalities requested by them,
without accessing the plaintexts, in exchange for a fee. We
assume well-known HSS-based MPC protocols, on which a
sufficiently large subset of the holders (determined by a thresh-
old t) is required to effectively compute or disclose secret
data. Larger committees are more secure, but more costly,
because they imply additional messages to be exchanged; each
member’s communication is typically linear to the number
of members. Fortunately, they scale independently of the
blockchain because the MPC does not depend on consensus.
For enhanced security, MPC nodes can provide a valid and
publicly verifiable proof of correctness for each computation,
using collaborative NI-ZKP, which is stored and verified on-
chain. Otherwise, the computation result will not be included
on-chain and nodes will not be paid with the fees.

Validation nodes: Nodes that generate and propose new
blocks. The procedure depends on the consensus mechanism,
such as Proof-of-Work or Proof-of-Stake.

Blockchain nodes: Nodes that perform the rest of the
blockchain functionalities, such as storing data and state infor-
mation, distributing pending transactions and new updates to
the rest of the nodes, or verifying the validity of transactions.
To validate public functions, they need to recompute the results
on public inputs, while to validate confidential functions, they
need to verify the NI-ZKP provided by the MPC nodes. If
incorrect data are detected by a certain number of blockchain
nodes, the MPC nodes involved in the computation and the
validator that proposed that block can loose their stake.

MPC SC: An SC governed by the blockchain that serves
as a mechanism to keep track of the available MPC nodes
and performs the locking of their stakes. It also pays the
reward fees provided by the users to the MPC nodes once
the computation result has been correctly stored on-chain and
verified.

App SC: An SC that describes the functions that can be
consumed by the users through contract calls, either public
or confidential. Users can deploy new application contracts,
and the blockchain ensures the governance of their data and
functionalities as specified in the SC. Honest MPC nodes will
not expose confidential data to unauthorized parties in the SC.

B. Workflow

The workflow of the framework is shown in Figure 3, and
each step is described below.

1. Committee registration: Nodes willing to become MPC
nodes are registered in the MPC SC (1a). To do so, they must
stake a certain amount of cryptocurrency and are then assigned
to one or more committees. Users can query the existing
committees in the MPC contract (1b) and select the one that
better fits their application, as different committees may have
different security levels. Thus, more nodes in a committee
mean a higher security against attackers (they have to corrupt
more nodes) but also implies additional fees.

2. Deploy the App SC: The App SC is deployed to the
blockchain by a user (2a). This contract works in the same
way as a standard public contract, but it can include MPC
functionality. Once it is deployed (2b-2c), users can interact
with it.

3. Call an MPC function: If the SC provides MPC
functions, the users can call them as if they were standard
transactions (3a). However, there are three main differences.
First, users must include the MPC committee ID in the
transaction to prevent unauthorized updates to the promise.
Second, the private inputs are sent to the MPC committee
through off-chain channels (3b). Finally, users must include
additional fees in the transaction to pay the MPC nodes for
the computation. Regarding the off-chain channels, they can
be managed entirely off-chain (using TLS, for example), or
the blockchain transaction can be used as a delivery mecha-
nism, using public key cryptography. Once the transaction is
accepted, the App SC state is updated (3c-3d), but the MPC



5

result is not yet available. In addition, the fee for the MPC
committee is locked in escrow within the MPC SC (3e).

4. MPC execution: Once notified (4a), the MPC nodes
jointly compute the function described in the App SC (4b) if
the confidential inputs have been correctly sent by users. The
MPC nodes generate the output and compute a verifiable proof
of correctness using NI-ZKP.

5. MPC resolution and fee payment: When the MPC
output is generated, the committee members update the App
SC state with the result (5a-5c). Once the network verifies its
correctness (5d), the MPC committee can retrieve the fee from
the MPC SC (5e).

C. Embedding asynchronous operations in blockchain

  Contract:


    public members[];


    function public buyTicket(public address){

        members.add(address);

    }

    function MPC generateResult() {

       	MPC res = lottery();

        return res.open();

    }

(a)

State 1 State 2 State 3

buyTicket(c)
time

members=
[a,b]

generateResult()

members=
[a,b,c]

members=
[a,b]

(b)

Fig. 4: Race condition issue: (a) an SC supporting both public
and secret (MPC) variables; (b) the state fork problem it
implies.

Calling MPC functions in blockchain as if they were
standard public functions poses a race condition problem by
default. In blockchain, all state updates are expected to be
linked sequentially, and even if forks can occur, the chain
is fixed to a unique sequence at the end, skipping shorter
branches. When MPC is involved, branching becomes more
problematic, and to illustrate this, Figure 4a shows an example
SC for a lottery game. The contract contains an array of
members, to keep track of the users who have bought a lottery
ticket, and two functions, buyTicket, to register participants,
and generateResult, to select a random winner. We note that
the latter function is of MPC type, since it involves an MPC
committee to generate a truly secure random number. In fact,
blockchain suffers from not having a truly secure randomness
generator, since attackers can try to modify the blockchain
state of the blockchain to bias the result of the randomness
generator. In an MPC-based randomness generator, each par-
ticipant provides a random seed, and the result is truly random
as long as at least one of the seeds is truly random.

The race condition is shown in Figure 4b, where the array
of members already contains two users at the beginning, a, b.
The function generateResult is then called, but while it is
being processed, an unaware user c may call buyTicket to
enter the lottery. The latter function will most likely finish
before generateResult (thus updating the state) because MPC
introduces larger latencies. However, user c will never be
included in the result because the MPC started its execution
with the value in state 1, unaware of the update of state 2,
hence leading to an unfair scenario. We note that locking the
array of members inside generateResult does not work either,
because the lock becomes effective once the transaction is
included in a block, that is, after buyTicket updates the state.

This issue can even be used by malicious actors to perform
Denial of Service (DoS) attacks, where they monitor the
blockchain queue of pending transactions for the arrival of
MPC transactions, and then call public functions in those SC.

To tackle the race condition without blocking the entire
state of the contract until an MPC is completed, we design
a solution based on the promise asynchronous programming
pattern. A promise is defined as the proxy of a value that is
not necessarily known when the promise is created. It allows
the system to instantiate a variable, continue the function’s
workflow, and return to that variable when its value is resolved.
Thus, a promise is tagged with one of three possible states
during its lifecycle: pending, fulfilled, or rejected.

In our solution, a promise identifies an MPC output that
has not yet been resolved. However, when the promise is
instantiated, there is on-chain evidence that the MPC is being
processed. This works according to the workflow in Figure 3,
where two on-chain transactions are associated with an MPC
call: the first one, sent by the user, instantiates the promise,
while the second one, sent by the MPC committee, resolves
the promise to the value obtained in the MPC. We note that
a rejected state could be provided if the committee cannot
resolve the promise within a certain amount of time.

V. THREAT ANALYSIS

This section describes the major threats to the proposed
framework and how they can be mitigated.

Impersonation attack. The attacker pretends to be the MPC
nodes or the user. In the first case, the user is unaware that
she is sending the secret shares to malicious nodes, thus
compromising privacy. This can be solved by verifying the
MPC nodes’ identities using public key certificates. MPC
nodes’ certificates can be registered on-chain in the MPC SC
at the time of locking the stake, making the mapping between
public keys and identities of the MPC nodes available through
a local call to any of the blockchain nodes. In the second case,
the user protects her confidential data and the actions that
can be performed on it through SC governance. This means
that the user describes the rights and the blockchain enforces
them. As in standard blockchains, users are authenticated by
cryptographic signatures, so a malicious actor without the
private key cannot recover the confidential data from the
blockchain or trigger an unauthorized function execution.

MPC attack. MPC security relies on the assumption that no
more than t nodes will try to collude; otherwise, they can learn



6

the confidential data and manipulate the computation results.
Although collusion is difficult to detect, there are mechanisms
for prevention and protection.

First, for prevention, increasing t directly increases security
but at a greater cost. Another aspect is how the MPC commit-
tee is selected. In a naive form, a malicious actor could form its
own committee of nodes and learn the confidential data sent to
them. To counter this, the committees can be formed randomly
or through a democratized process using voting committees
[2]. In addition, incentives for honest behavior, such as staking,
can discourage nodes from cheating, since they can lose their
stakes if misbehavior is detected.

Second, for protection, dispute resolution mechanisms can
be used by the members of an MPC committee. Thus, if
a node misbehaves, such as sending fake data to the other
nodes, and they detect and agree on such behavior, the node
can be penalized by losing its stake. Finally, even if the
MPC committee is fully corrupted, the publicly verifiable
NI-ZKP prevents invalid computations, since everyone in the
blockchain can verify that the function specified by the user
is the one computed on its committed inputs.

DoS attack. It may happen that the user pays for the
transaction and never gets the result back. As introduced in
the previous section, if the promise is not resolved by the
committee within a certain amount of time, it is marked as
rejected. Once this happens, users are refunded using the stake
of the MPC nodes.

VI. EVALUATION

A. Cost analysis

To evaluate the proposed solution, we provide a cost
comparison between the standard public case (STD) and the
confidential approaches using HSS (ours) and FHE [4]. For a
fair relative comparison, we analyze the cost of storing a single
UINT32 value and computing an addition and a multiplication.

Regarding scheme instantiation, the work in [4] uses TFHE
(based on the LWE problem) and provides a cost analysis.
Regarding HSS-based MPC, we choose SPDZ [9], which is
somewhat standard for maliciously secure MPC with authen-
ticated shares. To compare these schemes on an equal basis,
we choose scheme parameters such that they have 128 bits
of security. Increasing the bits would imply increasing the
parameters used and the cost.

First, we briefly describe how TFHE and SPDZ work.
In TFHE, a ciphertext is an (n + 1)-tuple of elements
(a1, ..., an, b). To achieve 128-bit security, the authors of [4]
choose n = 2048, and each element in the tuple is 64 bits long.
Adding two ciphertexts is done component-wise, so it takes
n + 1 additions. As for multiplication, one of the ciphertexts
must be encoded in a special ciphertext, which is a matrix
of (n + 1) × l LWE ciphertexts. Multiplication using such a
ciphertext requires l(n+1)2 products, where l is an instance-
specific small integer.

On the other hand, in SPDZ, an authenticated share of the
secret s is a triple of shares ([[s]], [[α]], [[α · s]]), where α is
the authentication parameter, and [[x]] is a notation indicating
that x is secret-shared among N holders. To achieve 128-bit

security, each share of [[x]] is 128 bits long. Addition between
two secret shares requires each MPC node to add them locally,
component-wise, so it takes 3 local additions per node. As
for multiplication, it requires additional pre-computation to
support the local operations required. Specifically, it requires
2N + 5 additions and 2 multiplications in each MPC node.

TABLE I: On-chain storage cost for a UINT32 value.

Approach Data stored Mandatory Algorithm Cost (B)

STD Plaintext Yes - 4

HSS (ours)
Data pointer Yes Keccak256 32

ZKP for computation correctness No Plonk (π + vk) 1184
Commitment No EC-Pedersen 64

FHE
ZKP for input correctness Yes Plonk (π + vk) 1184

Ciphertext Yes TFHE (packed) 16600
(unpacked) 263000

Table I compares the on-chain amount of data required to
store a single UINT32. The FHE approach requires a ZKP
to verify the data ownership of each ciphertext; otherwise,
malicious users could steal unowned ciphertexts from the
network and upload them again to request decryption. In
our HSS-based solution, the ZKP is optional, used only for
public verification of the computation performed by the MPC
committee (using the multi-prover from [14]). To instantiate
the ZKP, we assume the Plonk scheme, which supports proofs
on variable functionalities (this is needed to accept arbitrary
functions described in the SC). Note that both the proof π and
the verification key vk need to be uploaded to the blockchain.
In addition, HSS also requires a Pedersen commitment of
the user’s data to verify the correctness of the inputs in the
proof of computation. Table I shows that FHE has a much
more significant storage requirement than HSS. In addition,
in HSS, the main bottleneck is the ZKP (optional), while the
data pointer is small and constant (independent of the actual
length of the shares).

TABLE II: Computational cost to add and multiply UINT32.

Operation Scheme Modulus Cost (general) Cost (specific)

Add
STD 32 bits Add32 Add32
HSS 128 bits 3 ·Add128 12 ·Add32
FHE 64 bits (n+ 1) ·Add64 4096 ·Add32

Mul
STD 32 bits Mul32 16 ·Add32
HSS 128 bits (2N + 5) ·Add128 + 2 ·Mul128 (8N + 532) ·Add32
FHE 64 bits l(n+ 1)2 ·Mul64 268697664l ·Add32

Table II compares the number of operations required to
perform additions and multiplications. We use the addition of
two 32-bit elements Add32 as the base unit for comparison.
Then, we use some rough generalizations: an Add64 operation
is assumed to cost (on average) the same as 2 ·Add32. On the
other hand, one Mul32 will cost approximately 32

2 · Add32,
using a binary “shift-and-multiply” algorithm. Table II shows
that FHE is much more computationally expensive than HSS.
In fact, TFHE in [4] is instantiated with a plaintext space of
2 bits, which means that additional operations must be taken
into account to add two 32-bit integers. A multiplication in
FHE (assuming l = 1) costs the same as a multiplication
in HSS with 33,587,142 nodes, but for HSS setups, it is
usually sufficient to have a few dozen nodes. Also note that
the operations in HSS are off-chain, so they can be cheaper.



7

B. Discussion

From the above section, it can be seen that on-chain
confidential data implies a price, therefore it is not intended
for large-scale computations. While FHE introduces unreal-
istic and prohibitive costs, MPC is much more manageable.
However, there is a clear storage overload, which is the ZKP.

Using Ethereum as a reference, with average values for gas
and ETH costs incurred over the last year, storing a single
UINT256 (the smallest possible storage slot) costs 1.13 USD.
The HSS solution without ZKP requires the same amount
of storage, hence the same price. However, adding the ZKP
increases the cost by ×40 for HSS and ×555 for FHE.
Therefore, while HSS with ZKP may be acceptable in cheaper
scenarios such as layer 2 blockchains, the FHE approach may
still be unacceptable.

Regarding computation, our HSS-based solution computes
off-chain, therefore it could fit in Ethereum-based solutions
with MPC fees assigned independently from on-chain costs.
On the contrary, FHE computation is on-chain (and much more
expensive); therefore, it is not realistic for public blockchains
with the existing prices.

VII. CONCLUSIONS AND FUTURE WORK

To enhance the blockchain ecosystem and introduce con-
fidentiality capabilities, this work proposes a framework for
cost-effective and publicly verifiable computations using SCs,
HSS-based MPC committees, and NI-ZKPs. The architecture
relies on an MPC SC for committee management, and mech-
anisms such as staking or incentives to discourage malicious
behavior. Confidentiality is guaranteed by threshold assump-
tions provided by the MPC, and public verification allows the
network to ensure that computations are done correctly. In
addition, the promise’s asynchronous pattern is identified as
a solution to accommodate the asynchronous nature of MPC
delegation with the atomic execution of an SC.

The evaluation concludes that this framework is much less
storage- and compute-intensive than solutions based on FHE,
and therefore more realistic to be implemented and used at a
reasonable cost to users.

However, some future work remains. First, a specific im-
plementation should be provided to test different protocols
and verify performance aspects. In addition, the design can
be improved by incorporating dynamic MPC committees,
introducing easier and more dynamic mechanisms for the
user to upload confidential data, and allowing MPC functions
to output confidential values so as to enable interoperability
between SCs supporting MPC.

ACKNOWLEDGMENTS

This work has been partially supported by the project
PID2022-139268OB-I00, funded by the Spanish Ministry
of Science and Innovation, the Research State Agency
(10.13039/501100011033) and the European Social Fund
Plus. The first author has been funded by the Spanish
Ministry of Education under the National F.P.U. Program
(FPU19/01118). Funding for open access charge: Universidad
de Málaga/CBUA.

REFERENCES

[1] Oscar G. Bautista, Mohammad Hossein Manshaei, Richard Hernandez,
Kemal Akkaya, Soamar Homsi, and Selcuk Uluagac. MPC-ABC:
Blockchain-Based Network Communication for Efficiently Secure Mul-
tiparty Computation. Journal of Network and Systems Management,
31(4):68, July 2023.

[2] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi,
Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a
Public Blockchain Keep a Secret? In Rafael Pass and Krzysztof Pietrzak,
editors, Theory of Cryptography, Lecture Notes in Computer Science,
pages 260–290, Cham, 2020. Springer International Publishing.

[3] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden:
A Platform for Confidentiality-Preserving, Trustworthy, and Performant
Smart Contracts. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 185–200, June 2019.

[4] Morten Dahl, Clément Danjou, Daniel Demmler, Tore Frederiksen,
Petar Ivanov, Marc Joye, Dragos Rotaru, Nigel Smart, and Louis
Tremlay Thibault. fhevm: Confidential evm smart contracts using fully
homomorphic encryption, 2023. https://github.com/zama-ai/fhevm/blob/
main/fhevm-whitepaper.pdf, Accessed on 2024-06-07.

[5] Daniel Escudero. An introduction to secret-sharing-based secure multi-
party computation. Cryptology ePrint Archive, Paper 2022/062, 2022.

[6] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A Pragmatic In-
troduction to Secure Multi-Party Computation. 2018. https://ieeexplore.
ieee.org/document/8584398, Accessed on 2023-12-26.

[7] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jes-
per Buus Nielsen, Tal Rabin, and Sophia Yakoubov. Yoso: You only
speak once. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, pages 64–93, Cham, 2021. Springer
International Publishing.

[8] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptol-
ogy – EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[9] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ Great Again. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Lecture Notes in
Computer Science, pages 158–189, Cham, 2018. Springer International
Publishing.

[10] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli,
Frank H. P. Fitzek, and Najwa Aaraj. Survey on fully homomor-
phic encryption, theory, and applications. Proceedings of the IEEE,
110(10):1572–1609, 2022.

[11] Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. A Survey
of Blockchain From the Perspectives of Applications, Challenges, and
Opportunities. IEEE Access, 7:117134–117151, 2019. Conference
Name: IEEE Access.

[12] Decrypt / Nicholas Morgan. ’Ethereum Fails’ Without These 3
Changes, Says Vitalik Buterin, June 2023. https://decrypt.co/143991/
ethereum-fails-without-these-3-changes-says-vitalik-buterin, Accessed
on 2024-06-07.

[13] NuCypher. TACo - Threshold Access Control. https://github.com/
nucypher/nucypher, Accessed on 2023-12-26.

[14] Alex Ozdemir and Dan Boneh. Experimenting with collaborative
zk-SNARKs: Zero-Knowledge proofs for distributed secrets. In 31st
USENIX Security Symposium (USENIX Security 22), pages 4291–4308,
Boston, MA, August 2022. USENIX Association.

Daniel Morales is a Ph.D. candidate in the Department of Computer Science
at the University of Malaga. His research interests are related to developing
cryptographic protocols, highly focused on the privacy area, and designing
decentralized and trustless infrastructures.

Isaac Agudo is an Associate Professor in the Department of Computer
Science at the University of Malaga. He has been involved in several research
projects and is very active in technology transfer with international companies.
His main research interests include security and privacy in areas such as
blockchain or smart devices. In particular, he is currently working on privacy
preserving access control and information sharing.

Javier Lopez is a Full Professor in the Department of Computer Science
at the University of Malaga. His research activities are mainly focused on
network security, security protocols, and critical information infrastructures,
and he leads a number of national and international research projects in these
areas.

https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://ieeexplore.ieee.org/document/8584398
https://ieeexplore.ieee.org/document/8584398
https://decrypt.co/143991/ethereum-fails-without-these-3-changes-says-vitalik-buterin
https://decrypt.co/143991/ethereum-fails-without-these-3-changes-says-vitalik-buterin
https://github.com/nucypher/nucypher
https://github.com/nucypher/nucypher

	Introduction
	Related work
	Cryptographic technologies for confidentiality
	Non-Interactive Zero-Knowledge Proofs
	Homomorphic Secret Sharing

	Blockchain confidential computing: a framework
	General architecture
	Workflow
	Embedding asynchronous operations in blockchain

	Threat analysis
	Evaluation
	Cost analysis
	Discussion

	Conclusions and future work
	References
	Biographies
	Daniel Morales
	Isaac Agudo
	Javier Lopez


