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Abstract. There is a wide range of tabular data of great value to sci-
ence, economy and social progress. When sharing such data, privacy must
be taken into account. Traditionally, this has been addressed through
anonymization. However, in recent years, with the growth of AI, the
possibility of using generative models has emerged as a way to generate
synthetic data that guarantees privacy while maintaining their utility.
This systematic literature review aims to identify and classify existing
privacy-preserving tabular generative models in order to create a taxon-
omy of solutions. In addition, we analyze the privacy metrics and tech-
niques they use, and identify possible unexplored lines of research.
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1 Introduction

There is a wide variety of tabular data, including medical records, financial trans-
actions, and demographic details. This data holds immense value for scientific,
economic and social progress, as it can be used to identify patterns, facilitate
decision-making and disseminate knowledge. However, the sharing of this data
raises privacy concerns, given that it often contains PII (personally identifiable
information).

Traditional methods for protecting privacy in tabular data include [20]: data
pseudonymization, which replaces PII with fake identifiers, and data anonymiza-
tion, which involves generalization, suppression and perturbation techniques that
modify attributes in the dataset to obtain a supposedly anonymous dataset. To
decrease the risk of re-identification some models like k-anonymity, l-diversity
and t-closeness have been proposed. Recently, generative models have emerged as
a way to guarantee the privacy of datasets [9]. These models generate synthetic
data from real datasets, mimicking the statistical properties of the training data.

When dealing with synthetic datasets, there are significant differences in the
amount of knowledge and access available to different users (see Fig. 1). This
involves a range of privacy challenges that need to be considered. Users further
to the right of the diagram show a higher level of difficulty in discerning which
data were used to generate the synthetic data. The number of barriers will be
higher the further to the right the user is located, i.e. the less knowledge and
access the user has.
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Fig. 1. Different levels of knowledge and access to the trained model.

A model trainer uses the real data (D) given by the data owner to train a
generative model. The model trainer must be careful with possible data leakage
due to errors or intermediate outputs. The model trainer could also be mali-
cious, or the data owners may not trust the data owner. Security mechanisms
such as homomorphic encryption [3] or federated learning [36] should be imple-
mented. Once the model is trained, the user can have different levels of access
to the model. We refer to the user with full access to the model as the model
user. Despite having completed the training phase, it may be possible to obtain
information about D from the model [38]. Conversely, a model consumer can
only generate samples from the model using an API, but do not have access to
the trained model. The amount of information available to this type of users de-
pends on the API. A first-level API allows unlimited samples generation, leading
to honest-but-curious users who seeks information while respecting established
protocols. On the other hand, a second-level API has some restrictions on data
generation, i.e. limited number of requests or attributes that are not allowed to
be generated. Membership Inference Attacks (MIAs) [26] can exploit the lack of
restrictions on data generation. MIAs take advantage of differences in how mod-
els respond to queries from members inside and outside of the training dataset.
Finally, the data consumer only has access to a synthetic dataset (D’ ) gener-
ated by the model, and is unable to generate samples by himself. Although more
challenging, it is possible to obtain information about D from D’ [4].

The contributions of this paper can be summarized as follows:

1. The use of a systematic methodology to provide an overview of privacy
techniques used in tabular data generative models.

2. A collection of 24 systematically selected papers.
3. A collection of privacy metrics for in tabular data generative models.
4. A taxonomy of privacy-preserving generative models for tabular data.

This works is organized as follows. Section 2 introduces the methodology and
how the papers were selected. Section 3 discusses the different ways to measure
privacy in tabular data generation and explains the techniques used to ensure
privacy collected from the selected papers. Section 4 provides a taxonomy of
generative models for tabular data, giving an order and clarifying the differences
between them. Finally, Section 5 draws conclusions and outlines possible lines
of future research based on the observations made in the paper.
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2 Systematic literature review

A Systematic Literature Review (SLR) is a rigorous approach to reviewing and
synthesizing research literature on a specific topic. This methodology is designed
to provide a comprehensive, unbiased and reproducible summary of existing
research. The PICOC framework is employed to define the scope and focus of
our study. It involves three main steps: planning, conducting and reporting.

2.1 Planning

This SLR is performed to answer the following questions:

1. What are the main techniques used to guarantee privacy in generative models
for tabular data?

2. How can we measure the privacy of generative models for tabular data?

PICOC terms help to define a list of keywords, as shown in Table 1. Using
these keywords we can create a search query (see Definition 1), which addresses
our research questions.

Table 1. Keyword list created from PICOC terms.

Keywords Synonyms PICOC
Tabular data Database, Dataset Population

Privacy techniques Data masking, Differential privacy, Masked data, Pri-
vacy approach, Privacy methods, Privacy-preserving,
k-anonymity, l-diversity, t-closeness

Intervention

Generative model Data synthesis, Synthesizer, Synthetic data genera-
tion, Synthetic generator

Comparison

Benchmark Outcome
Privacy metric Anonymity metric Outcome
Utility metric Data quality, Data utility, ML efficacy, Usefulness of

data
Outcome

Definition 1 (Search Query). ("Tabular data" OR "Database" OR "Dataset")
AND ("Privacy techniques" OR "Data masking" OR "Differential privacy" OR
"Masked data" OR "Privacy approach" OR "Privacy methods" OR "Privacy-
preserving" OR "k-anonymity" OR "l-diversity" OR "t-closeness") AND ("Gen-
erative model" OR "Data synthesis" OR "Synthesizer" OR "Synthetic data gen-
eration" OR "Synthetic generator") AND ("Benchmark" OR "Privacy metric"
OR "Anonymity metric" OR "Utility metric" OR "Data quality" OR "Data
utility" OR "ML efficacy" OR "Usefulness of data")

The next step is to define which digital libraries use to search. We selected
IEEE Digital Library, ISI Web of Science and Scopus. There might be duplicate
papers but this will be taken into account in the conducting phase.
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To refine the search and ensure the inclusion of high-quality and relevant
studies, the following exclusion criteria are applied: (i) accepted papers should
address privacy for generative AI models for tabular data, (ii) surveys or re-
views will be discarded, (iii) only articles, conference papers, proceedings or
journals will be considered, (iv) a minimum number of citations is required. Pa-
pers published before 2022 should have at least 20 citations. Papers from 2022
are required to include a minimum of 10 citations. Papers from 2023 or 2024
must have a minimum of 5 citations. To sum up, these are the exclusion criteria:

– The paper does not discuss privacy
– The paper does not discuss AI
– The paper does not focus on tabular data
– It is a survey/review
– It is not an article, conference paper, proceeding or journal
– It has not enough citations
– It is not published in English

After an initial filtering using the exclusion criteria, a checklist of five ques-
tions (listed below) with specific criteria is established. There are three possible
scores for each criterion: Yes (1 point), Partially (0.5 points), or No. Thus, 5
points is the maximum score. Papers that reach 3 points are finally selected.

1. Does the article propose a new AI model for tabular data generation?
2. Does the article propose new attacks to privacy in generative models?
3. Does the paper propose a model practical implementation?
4. Does the model include techniques to provide privacy?
5. Does the article discuss how to measure privacy for tabular generative data

models? Does it also include a way to measure utility?

2.2 Conducting

The first step is to perform a search using the query string presented in Section
2.1. Initially, a total of 977 papers were found. From this list of papers, 36 were
duplicated, giving a total of 941 unique papers. To provide a clearer understand-
ing of the evolution of research on this topic, Figure 2 illustrates the number of
papers published each year. The graph shows a growth in the number of papers
over the years. Although the number of papers published in 2024 is lower than
in previous years, the reason is that the current writing date is mid 2024.

This is the moment to apply the exclusion criteria presented in Section 2.1.
All papers are reviewed, focusing on the title, keywords, and abstract. At the
end of this process, 61 papers are accepted.

After an initial filtering, it is time to apply the Quality Assessment Checklist
presented in Section 2.1. During this step, potential papers are added through
snowballing. The papers added in this way are also submitted to Quality As-
sessment Checklist. During the conducting process, a backward snowballing (or
backward reference searching) is performed. This involves looking through the
references listed in the selected papers to find older studies that the key papers
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Fig. 2. Number of papers found

Table 2. Reference list of papers.
Years Papers
2017 [15]
2019 [2], [34], [11]
2020 [33], [12]
2021 [6], [27], [13], [5]
2022 [28], [31], [32], [30], [8], [16]
2023 [22], [14], [35] [17], [29], [18], [19]
2024 [37]

have cited, which might also be relevant in the research topic. At the end of
this process, a final list of 24 papers are selected. The reference list of papers is
shown in Table 2. As with the papers found with the query (Figure 2) there is
an increase in the number of selected papers over the years, except in 2024.

2.3 Reporting

In this section, we extract some statistical data about the selected articles. The
information extracted from the papers is discussed in the following sections.

13
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Fig. 3. Model family distribution, in which
models are grouped according to their
nature or type.
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Fig. 4. Evolution of the GANs proposed
in the selected papers compared to the
number of selected papers.

Out of the 24 selected papers, 17 papers propose a new model for privacy-
preserving tabular data generation. There are two papers that propose two
models, for a total of 19 proposed models. Figure 3 shows the different types
of model families collected. This chart will be useful in establishing a taxonomy
of different generative models. There is a clear predominance of GANs over the
others.

Figure 4 compares the years of creation of GANs with the years of publication
of all selected papers. It can be seen that the growth of interest in GANs follows
the growth of interest in the research area. This shows that GANs are the type
of generative models that are most often used to generate tabular data with
privacy guarantees.
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3 Measuring Privacy in tabular data generation

There are several ways to measure privacy in generative models for tabular data.
Some traditional privacy techniques, such as k-anonymity or t-closeness, can
also implicitly act as privacy measures. Among the selected papers, differential
privacy stands out.

Differential privacy [7] is a mathematical framework designed to provide pri-
vacy guarantees for data entries within a dataset. Differential privacy ensures
that the inclusion or exclusion of a single individual’s data does not significantly
affect the outcome of any analysis, thereby protecting the individual’s privacy.

Definition 2 (Neighboring Datasets). Two datasets, D and D’, are neigh-
boring, if and only if D’ differs from D in only one entry.

Definition 3 ((ε, δ)-Differential Privacy). For a non-negative privacy bud-
get ε and a non-negative relaxation term δ, an algorithm, M , satisfies (ε, δ)-
differential privacy if for any pair of neighboring datasets D, D’ and S ⊆ Range(M)

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S] + δ (1)

where Pr is taken with respect to the randomness of M . δ is a relaxation
term to ε-differential privacy. There are a variety of techniques for achieving
differential privacy. Essentially, the algorithm M perturbs the input with some
noise distribution, i.e. normal distribution, based on ε and δ.

The following expression is obtained by clearing ε from expression 1:

ε ≥ ln

(
Pr[M(D) ∈ S]− δ

Pr[M(D′) ∈ S]

)
(2)

A lower value of ε implies a higher level of privacy because inequality 2 is
more restrictive. However, decreasing ε increases the noise that needs to be added
to satisfy Definition 3

There are some variations or extensions of the definition of differential pri-
vacy, such as RDP (Rényi Differential Privacy) [21], LDP (Local Differential
Privacy) or CDP (Concentrated Differential Privacy).

Privacy accounting concept indicates that there is a need of some “accoun-
tant” procedure that computes the privacy cost at each access to the training
data, and accumulates this cost as the training progress [1]. The privacy analysis
of our some differential privacy techniques employs the moments accountant ap-
proach to keep track of the privacy cost in multiple iterations. This concept can
also be used to measure privacy degradation with increasing number of queries.
One way to compensate for this progressive loss of privacy would be to progres-
sively increase the noise.

There are several techniques to ensure differential privacy, such as Differen-
tially Private Expectation Maximization (DP-EM) [25], Private Aggregation of
Teacher Ensembles (PATE) [23,24] or Differentially Private Stochastic Gradient
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Descent (DP-SGD) [1]. In general, they all involve the addition of noise in one
way or another.

Similar to differential privacy, there is also the concept of identifiability [33].
This framework is used to measure and limit the risk of re-identification. There
are also other ways to measure privacy for those models that do not theoreti-
cally guarantee privacy, but rather focus on an empirical approach to measure
privacy. These focus on performing attacks to see how effective they are. The
most common is the Membership Inference Attack (MIA) [26].

SELENA [30] is a ensemble method that combines Split-AI and Self-Distilla-
tion to mitigate MIAs. Although SELENA is primarily designed for supervised
classification tasks, it could be used as a component of a generative model. For
example, SELENA could be used in GANs to protect the discriminator from
revealing membership information about the training data. SELENA trains sub-
models on random data subsets and uses adaptive inference to ensure similar
behavior on member and non-member inputs, significantly reducing MIA risks.

4 A taxonomy for tabular data generative models

This section categorizes tabular data generative models from selected papers
(see Figure 5). Due to length restrictions, the taxonomy focuses on GANs with
privacy guarantees. However, other types of models were found:

– Autoencoders (AEs): DP-SYN [2]
– Probabilistic Graphical Models (PGMs): PrivMRF [5] and PrivIncr [18]
– Recurrent Neural Networks (RNNs): Conditional-LSTM [22]
– Copula-based models: LoCop and DR_LoCop [32]

The white boxes in Figure 5 represent each of the 13 models, while the gray
boxes represent the categories into which the different models fall. Note that DP-
GAN, whose connector is shown as a dotted line, is a particular case. Although it
is possible to introduce conditions on one of its components [13], it does not fall
within the definition of a conditional GAN. Therefore, it is placed in the category
of non-conditional GANs. Models that were originally designed to generate EHR
(Electronic Health Record) data are in a green box. Similarly, those GANs that
integrate an autoencoder as a component of their model are in a blue box.

4.1 Generative adversarial networks (GAN)

A generative adversarial network (GAN) [10] is a type of machine learning frame-
work where two neural networks are trained simultaneously in a zero-sum game
setting. GANs have established themselves as one of the state-of-the-art gener-
ative models. GANs consists of two adversarial models:

– Generator G : takes random noise as input and generates samples. It aims to
generate data that imitates a given dataset.
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Fig. 5. Privacy-preserving tabular data GAN taxonomy

– Discriminator D : attempts to differentiate between real data samples taken
from the training dataset and fake data samples generated by the generator.
It outputs a probability indicating if a given sample is real or fake.

The generator tries to fool the discriminator by generating realistic data. The
discriminator tries to become better at distinguishing real data from fake data.
This creates a minimax game between them. The generator aims to maximize
the probability of the discriminator misclassifying its outputs as real, and the
discriminator aims to minimize the probability of incorrectly classifying real data
as fake and vice versa.

There is a wide variety of GANs, each one specialized in generating certain
kinds of data, such as images, video, network trafic, tabular data, etc.

Conditional GANs There is no control on the process of data generation in
a standard GAN. It generates synthetic data from the real data without allow-
ing any further conditions or requirements. Conditional Generative Adversarial
Networks (CGANs) are used to address this problem. With CGANs, a condition
can be included to control the data generation process. The following types of
CGANs are designed to generate tabular data ensuring differential privacy:

– CTAB-GAN+ [37]: It is a general purpose model trained with DP-SGD to
impose strict privacy guarantees and leverage the RDP for privacy account-
ing because it provides stricter bounds on the privacy budget.

– DP-CGAN [29]: It is focused on EHR data generation. This model uses
standard differential privacy.

– DP-CTGAN [8]: It is focused on EHR data generation. This model also
uses standard differential privacy. Has a federated learning-oriented variant,
FDP-CTGAN.

– EHR-M-GAN cond [17]: It is a conditional variation of EHR-M-GAN. It is
focused con EHR data generation. It uses a dual variational autoencoder
(dual-VAE) as a part of its architecture. DP-SGD is used to guarantee pri-
vacy.
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Non-conditional GANs There are other ways to create synthetic data with
privacy assurances beyond CGANs. The following GAN models provide privacy
guarantees but are not conditional:

– EHR-M-GAN [17]: It is focused con EHR data generation. It uses a dual
variational autoencoder (dual-VAE) as a part of its architecture. It uses
DP-SGD to guarantee privacy.

– DP-GAN [13]: One of the components is a conditional network, but it is
not a conditional GAN as CGANs are defined. This model uses standard
differential privacy.

– PATE-GAN [34]: This model modify the discriminator to be differentially
private using a modified version of PATE framework.

– RDP-CGAN [31]: It is a convolutional GAN focused on EHR data. To ensure
privacy, this model uses RDP.

– RDP-GAN [19]: This model uses RDP to ensure privacy. It is a general
purpose model.

5 Conclusions

This paper provides an overview of the state of the art in privacy-preserving tab-
ular data generation. From a total of 941 unique papers, we selected 24 papers
to answer two research questions: “What are the main techniques used to guar-
antee privacy in generative models for tabular data?” and “How can we measure
the privacy of generative models for tabular data?”. For the first question, we
found that although there is a wide range of generative models in the literature,
GAN is the predominant model for synthetic tabular data generation, and the
most used application scenario is the protection of medical records. Regarding
the second question, most models focus on providing differential privacy guar-
antees, either its standard definition or some variants. However, we also found
some models that do not theoretically guarantee privacy, but rather focus on an
empirical approach to measure privacy. As future work, we plan to identify other
generative models where the community has not yet begun to discuss privacy
risks, and analyze the reasons for this, in order to incorporate privacy guarantees
into these models.
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