Location Proximity Attacks against Mobile Targets: Analytical Bounds and Attacker Strategies

TitleLocation Proximity Attacks against Mobile Targets: Analytical Bounds and Attacker Strategies
Publication TypeConference Paper
Year of Publication2018
AuthorsX. Wang, X. Hou, R. Rios, P. Hallgren, N. Ole Tippenhauer, and M. Ochoa
Conference Name23rd European Symposium on Research in Computer Security (ESORICS 2018)
Series TitleLNCS
Volume11099
Pagination373-392
PublisherSpringer
Conference LocationBarcelona
ISBN Number978-3-319-98988-4
Other NumbersAcceptance rate: 19.7%
Abstract

Location privacy has mostly focused on scenarios where users remain static. However, investigating scenarios where the victims present a particular mobility pattern is more realistic. In this paper, we consider abstract attacks on services that provide location information on other users in the proximity. In that setting, we quantify the required effort of the attacker to localize a particular mobile victim. We prove upper and lower bounds for the effort of an optimal attacker. We experimentally show that a Linear Jump Strategy (LJS) practically achieves the upper bounds for almost uniform initial distributions of victims. To improve performance for less uniform distributions known to the attacker, we propose a Greedy Updating Attack Strategy (GUAS). Finally, we derive a realistic mobility model from a real-world dataset and discuss the performance of our strategies in that setting.

DOI10.1007/978-3-319-98989-1
Citation Keyrios2018mob
Paper File: 
https://nics.uma.es:8082/sites/default/files/papers/rios2018mob.pdf

Supported by SMOG PRECISE