
Cold Boot Key Recovery by Solving Polynomial
Systems with Noise

Martin R. Albrecht1 & Carlos Cid2

Team Salsa, LIP6, UPMC, Paris, France

Information Security Group, Royal Holloway, University of London, UK

ACNS, 07. June 2011

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Coldboot Attacks I

I Recently a method for extracting data from RAM was proposed.

I Information in DRAM is not instantly lost when the power is cut,
but decays slowly over time.

I This decay can be further slowed down by cooling the chip.

I Thus, an attacker can

1. deep-freeze a DRAM module

2. move it to a target machine which dumps the content to disk

3. find the most likely key candidate (which is erroneous due to decay)

4. use some mechanism to correct those errors

The technique is called Coldboot attack in literature.

Coldboot Attacks II

Definition (The Coldboot Problem)

We are given

1. K : Fn
2 → FN

2 where N > n,

2. two real numbers 0 ≤ δ0, δ1 ≤ 1,

3. K = KS(k) and Ki the i-th bit of K .

4. K ′ = (K ′0,K
′
1, . . . ,K

′
N−1) ∈ FN

2 with the following distribution:

Pr [K ′i = 0 | Ki = 0] = 1− δ1, Pr [K ′i = 1 | Ki = 0] = δ1,
Pr [K ′i = 1 | Ki = 1] = 1− δ0, Pr [K ′i = 0 | Ki = 1] = δ0.

5. and some control function E : Fn
2 → {True,False}, which returns

true for the pre-image of the noise free version of K .

The task is to recover k such that E(k) returns True.

Coldboot Attacks III

A bit K ′i = 0 of K ′ is correct with probability

Pr [Ki = 0 | K ′i = 0] =
Pr [K ′i = 0|Ki = 0]Pr [Ki = 0]

Pr [K ′i = 0]
=

(1− δ1)

(1− δ1 + δ0)
.

Likewise, a bit K ′i = 1 of K ′ is correct with probability (1−δ0)
(1−δ0+δ1) . We

denote these values by ∆0 and ∆1 respectively.

Coldboot Attacks IV

Cipher δ0 δ1 Success Time
DES 0.10 0.001 100% –
DES 0.50 0.001 98% –
AES 0.15 0.001 100% 1s
AES 0.30 0.001 100% 30s

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys.

In Proceedings of 17th USENIX Security Symposium, pages 45–60, 2008.

Can we do better and can we recover keys for more complicated key
schedules like Serpent?

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {f0, . . . , fm−1} where each fi ∈ F[x0, . . . , xn−1].

A solution to F is any point x ∈ Fn such that

∀fi ∈ F : fi (x) = 0.

Max-PoSSo

We can define a family of Max-PoSSo (or Max-MQ) problems,
analogous to the well known Max-SAT family of problems.

Definition (Partial Weighted Max-PoSSo)

Given two set H and S of polynomials. Find a point x ∈ Fn such that

I ∀f ∈ H : f (x) = 0 and

I
∑

f∈S C(f , x) is minimized

where C : f ∈ S, x ∈ Fn → R≥0 is a cost function which

I returns 0 if f (x) = 0 and

I some value > 0 if f (x) 6= 0.

Coldboot as Partial Weighted Max-PoSSo

I Let FK be an equation system corresponding to K.

I Assume that for each noisy output bit K ′i there is some fi ∈ FK of
the form gi + K ′i where gi is some polynomial.

I Assume that these are the only polynomials involving output bits.

I Denote the set of these polynomials S.

I Denote the set of all remaining polynomials ∈ FK as H.

I Define the cost function C as a function which returns

1
1−∆0

for K ′i = 0, f (x) 6= 0,
1

1−∆1
for K ′i = 1, f (x) 6= 0,

0 otherwise.

I Express E as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Mixed Integer Programming I

Integer optimization deals with the problem of minimising a function
subject to linear equality and inequality constraints and integrality
restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a
problem of the form

min
x
{cT x |Ax ≤ b, x ∈ Zk × Rl}

where

I A is an m × n-matrix (n = k + l),

I b is an m-vector and c is an n-vector.

PoSSo as MIP

I We can express solving polynomial systems (over F2) as Mixed
Integer Programs.

I We can then use an off-the-shelf MIP solver.

I In this work we use the Integer Adapted Standard Conversion.

Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.

Bivium as a Mixed-Integer Linear programming problem.

In Matthew G. Parker, editor, Cryptography and Coding – 12th IMA
International Conference, volume 5921 of Lecture Notes in Computer
Science, pages 133–152, Berlin, Heidelberg, New York, 2009. Springer
Verlag.

Partial Weighted Max-PoSSo as MIP

We only need to consider Partial Weighted Max-PoSSo because it is the
most general case:

I Convert each f ∈ H to linear constraints usign IASC.

I For each fi ∈ S add a new binary slack variable ei to fi and convert
the resulting polynomial using IASC.

I The objective function we minimise is
∑

ciei where ci is the value of
C(f , x) for some x such that f (x) 6= 0.

Any optimal solution x ∈ S will be an optimal solution to the Partial
Weighted Max-PoSSo problem.

Coldboot as MIP

Coldboot → Partial Weighted Max-PoSSo → MIP

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Simplifications

I We do not model E since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

I We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

I We may use an “aggressive” modelling strategy where we assume
δ1 = 0 which allows us to promote some polynomials from S to H.
The “normal” modelling assumes δ1 = 0 + ε.

AES I

Core ⊕ ⊕ ⊕ ⊕

Core ⊕ ⊕ ⊕ ⊕

AES II

I Most of the key schedule is linear.

I The original key k appears in the output.

I The S-box size is 8-bit (explicit degree: 7).

AES III

N δ0 aggr limit t r min t avg. t max t
2 0.05 – 3600.00 59% 50.80 s 2124.90 s 3600.00 s
3 0.15 + 60.0s 63% 1.38 s 8.84 s 41.66 s
4 0.15 + 60.0s 70% 1.78 s 11.77 s 59.16 s
4 0.30 + 600.0s 66% 4.81 s 116.07 s 600.00 s
4 0.30 + 3600.0s 69% 4.86 s 117.68 s 719.99 s
4 0.35 + 600.0s 65% 4.66 s 185.14 s 600.00 s
4 0.35 + 3600.0s 68% 4.45 s 207.07 s 1639.55 s
4 0.40 + 600.0s 47% 4.95 s 284.99 s 600.00 s
4 0.40 + 3600.0s 61% 4.97 s 481.99 s 3600.00 s
5 0.40 + 3600.0s 62% 7.72 s 704.33 s 3600.00 s
4 0.50 + 3600.0s 8% 6.57 s 3074.36 s 3600.00 s
4 0.50 + 7200.0s 13% 6.10 s 5882.66 s 7200.00 s

Table: AES considering N rounds of key schedule output.

Serpent I

w−8 w−7 w−6 w−5 w−4 w−3 w−2 w−1

wi−8 wi−7 wi−6 wi−5 wi−4 wi−3 wi−2 wi−1iφ wi

⊕ ⊕ ⊕ ⊕⊕
≪11

wi wi+1 wi+2 wi+3

S

ki ki+1 ki+2 ki+3

Serpent II

I All key schedule output bits depend non-linearly on the input.

I The original key k does not appear in the output.

I The S-box size is 4-bit (explicit degree: 3).

Serpent III

N δ0 aggr limit t r min t avg. t max t
12 0.05 – 600.0s 37% 8.22 s 457.57 s 600.00 s
12 0.15 + 60.0s 84% 0.67 s 11.25 s 60.00 s
16 0.15 + 60.0s 79% 0.88 s 13.49 s 60.00 s

16 � 8 0.15 + 1800.0s 64% 95.52 s 1089.80 s 1800.00 s
16 0.30 + 600.0s 74% 1.13 s 57.05 s 425.48 s
16 0.50 + 1800.0s 21% 135.41 s 1644.53 s 1800.00 s
16 0.50 + 3600.0s 38% 136.54 s 2763.68 s 3600.00 s

Table: Serpent considering 32 · N bits of key schedule output

Serpent IV

Ad-hoc approach:

I We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

I On average the noise free output should have 64 bits set to zero.

I In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

I If δ0 = 0.15 we have ≈ 236.87.

I If δ0 = 0.30 we have ≈ 262.

Thank you for your attention!

	Coldboot Attacks
	Polynomial System Solving with Noise
	Mixed Integer Programming
	Application

