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Background: power-analysis

Power trace (s)

• An attack to reveal a key of a cryptographic device 
from power traces

• Device destruction is unnecessary 
 advantageous factor for an attacker

key

Reveal…

t

V

cryptographic device
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Type of Power Analysis

• Simple Power Analysis (SPA)

–Reveals a key from a single power trace,
(or from the average of single power 
traces to reduce noise)

• Differential Power Analysis (DPA)

–Reveals a key by a differential of 
plurality of power traces

Cryptographic Devices must 
prevent both SPA and DPA
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Attack with SPA (on RSA)
• Distinguishes elementary operations from a single 

power trace, which is correlated to the key bits.

input: ciphertext c, private key, d=d[k-1]||..||d[0] (k-bit)
T=1
for i=k-1 down to 0
T = T2 (mod N)                    /* Square (S) */
if d[i]=1 T=T×c (mod N)   /* Multiply (M) */
return T= cd (mod N)

RSA decryption：cd (mod N), 

0 1

S M

d =

SS M

1

Power trace：d is revealed by distinguishing between S, M

calculated only when d[i]=1
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SPA countermeasure 
• Square and Multiply method (S&aM, Coron CHES’99)

– Performs dummy multiplications when d[i]=0

– Small-memory solution, and suitable for smartcards

input: ciphertext c, private key d=d[k-1]||..||d[0]
T[0]=1;
for i=n-1 down to 0

T[0] = T[0]2 (mod N)                /* Square (S) */
T[1 – d[i] ]=T[0]×c (mod N)  /* Multiply(M) */

return T= cd (mod N)

RSA Decryption with S&aM:cd (mod N)

Always performed

0 1

S M

d =

SS M

1

Power trace: d can not be revealed

M

Good solution, but could be partial-SPA resistant (later)
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Attack with DPA
• Considers differentials of power traces to reveal the 

key

スマートカード

秘密情報

V V-

Smartcard

Input message

Reveal

Make differential

incorrect

t
V

correct
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e
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t

Assume some key bits

If correct, peak appears

tt

Measures power trace

Attacker

• Data randomization technique works as 
countermeasure
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DPA Countermeasure (on RSA)
• Decryption without countermeasures

cd (mod N)
(c: plaintext, d: private key, N: modulus)

• Decryption with exponent blinding (countermeasure)

cd+ri(N) (mod N)
(ri: random number, (): Euler's totient function)

• Decryption (only) with base blinding (countermeasure)
vulnerable to a local timing attack!(Schindler PKC’02)

(c(ri
e))d (mod N) ×ri

-1 (mod N)
(ri: random number, e: public exponent)

randomized

randomized randomized
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Our question

• How secure is the following 
combination?

–S&aM (SPA countermeasure)

–exponent blinding (DPA countermeasure)

• We focus on its security against SPA. It 
is

–secure to „classical‟ SPA attacks, but…

– it could be only partial SPA-resistant
when using special SPA attacks
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• By using c = -1, an attacker must distinguish the fixed 
value operation M: 1×-1, S1:(-1)2 and S2:(1)2

Homma et. al, "SPA using a steady value input against RSA hardware implementation", SCIS ’07

Theory: insecure and non-SPA resistant
Real: due to noise, some operations are indistinguishable
partially SPA-resistant (some observed bits are false)

• Attacks proposed by Schindler at PKC‟02 and CT-RSA 
2008 are also applicable

An example of Special SPA attacks 
(Yen, Mycrypt ’05)
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Our goal
• Partial SPA-resistance was supposed be secure 

enough even for very small error bits ratio

– e.g. 5% unnoticed error bits in 1024-bit RSA key
 recovering cost: j=0,..,51 1024Cj =2288

スマートカード

秘密情報

Smartcard
Partial SPA-resistant

randomized exponent:
10010101

randomized exponent:
100* *0*1

• So far:

– Partial SPA-resistance was supposed to be secure

Our result: a new attack that shows 

partial SPA resistance can be insufficient!

But…
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Our proposal

• Our attacks are applicable to:

–RSA without CRT  /  RSA with CRT

–ECC

• Two attacks that tolerate error bits

–Basic attack:
tolerates high error rates,
but requires many power traces and large 
computational workload

–Enhanced attack:
tolerates lower error rates than the basic 
attack but requires by far less power traces
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●Basic attack
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Notation

• vi  : randomized exponent in the cryptographic device

– vi = d + riy, where
ri: unknown random number in i-th decryption 
y: (N) or (p) in RSA, #E in ECC

• vi’  : randomized exponent with error bits,   

observed by an attacker

– vi’ = d+riy+ei, where
ri : random number in i-th decryption 
y : (N) or (p) in RSA, #E in ECC
ei: guessing error
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Basic attack: Entire procedure
• Step B-1. Observe randomized exponent vi’

v1’

• Step B-3. Correct the error bits by applying majority 
decision (bitwise) to the “winning class”  key is revealed

• Step B-2. Classify vi’ with regard to the random number ri

– As soon as one class contains t elements it is chosen as 
“winning class”. 

v2’

v3’

= 10010100010100101 = 00110111010101011

= 10011100110100100

v1’

v2’

v3’

v4’

v5’

v6’

Class vi’

1

2

3

v4’ = 00111110110100011

winning class

v2’ = 00110111010101111

v4’ = 00111110110100011

v6’ = 10011110110101101

vi
= 00111110110101111 corrected key
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determined as ri=rj

Step B-2:Classification of vi’

(=-4u)

HD (vi’,vj’) HD(vi’,vj’)(case ri=rj)

HD(x,y): Hamming Distance between x,y

(case rirj)

M
U

• Theory and experimental result shows
≤ 23% error in ECC, or ≤30% error in RSA 
is tolerable for classification

ECC RSA

log2d log2ri e TP FP log2d log2ri e TP FP

256 16 0.15 1.0 0.0000 1024 16 0.20 1.0 0.0000

256 16 0.20 0.9762 0.0001 1024 16 0.25 1.0 0.0001

256 16 0.23 0.8206 0.0000 1024 16 0.30 0.8756 0.0000

e : Error ratio, TP: True Positive, FP: False Positive

Experiment results on deciding whether ri=rj (10000 trials)

• Use statistical test on hamming distance of vi’ and 
vj’ to decide whether ri=rj
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Step B-3:Correct error bits
with majority decision

• There is a trade-off between error rate and
probability to reveal the correct key.

v2’ = 00110111010101111

v4’ = 00111110110100011

v6’ = 10011110110101101

vi
= 00111110110101111 Corrected key

t error keys

• Our experimental results show that for small R
≤ 23% error rate in ECC, and ≤ 28% error rate in 
RSA is tolerable for revealing correct key.

ECC RSA

t log2d R e Success #of vi’

(O(2R))

t log2d R e Success # of vi’

(O(2R))

13 256 10 0.22 10/10 5253 17 1024 10 0.20 10/10 6890

15 256 10 0.23 09/10 7425 27 1024 10 0.25 10/10 13833

11 256 16 0.20 10/10 137000 37 1024 10 0.28 6/10 23682

Experiment result on successful key revealing

e: error ratio, R: bit length of ri
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●Enhanced attack
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Basic attack: Disadvantages

• Even moderate parameters t require

– at least O(2R) power traces 
(R = bit length of the random numbers)

– at least O(22R) computations

• NOTE: If the total number of decryptions is limited 
(clearly) below 2R/2:
 Basic attack becomes definitely infeasible

To reduce the required number of power traces…

Our next proposal: enhanced attack
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New idea: u-sum algorithm

v1’ v4’
v2’ v3’ v5’ v6’ v7’ v8’

v12’ v13’v14’ v15’v16’

v9’

v10’ v11’

v1’ v3’ v2’ v5’
v4’ v6’ v7’ v8’

• Enhanced attack
Find pairs of u-tuples of power traces with identical 
sums of the random numbers ( “identical u-sums”)
 Reduces the number of power traces drastically!

• Basic attack
Find pairs of power traces with identical random
numbers
 Many power traces are required
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• Step E-1. Observe randomized exponents vi’

v1’

• Step E-3. Solve the system of linear equations obtained in 
Step E-2  random numbers are revealed (up to a shift)

v2’

v3’

= 10010100010100101 = 00110111010101011

= 10011100110100100

(vi,1’,vi,2’) (vj,1’, vj,2’)

v4’ = 00111110110100011

v1’ v3’ v2’ v5’

v2’ v3’ v4’ v6’

v2’ v4’ v3’ v5’

r1+r3=r2+r5

r2+r3=r4+r6

r2+r4=r3+r5

r1=100010101
r2=101000101
r3=100101010

r4=010101011
r5=111010010
r6=100110110

• Step E-2. Find pairs of u-tuples for which the u-sum of 
the random numbers ri are equal (here: u=2)

Enhanced attack: Entire proc.(1/2)
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v1’ - r1#E

v2’ = 00111110110100011

v3’ = 10011110110101101

d = 00111110110101111 Corrected key

v4’ = 00100111010101111

v5’ = 01111110110100111

v6’ = 10111010110101001

= 00110111010101111

Note: In ECC, vi’ – ri#E represents  d with error bits

- r2#E

- r3#E

- r4#E

- r5#E

- r6#E

Unlike for the basic attack 
all vi’s can be used for majority decision

• Step E-4. Remove the random number ri from vi‟; obtain the 
correct key value by majority decisions and correction algorithm

(*) For RSA, attacker tries to obtain (N) in place of d.

Enhanced attack: Entire proc.(2/2)

(simplified 
description)
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Step E-2:Finding u-tuple pairs
• Apply statistical test on Ham(NAF(vi,1’+vi,2’ - vj,1’-vj,2’))

to decide whether ri,1+ ri,2 =rj,1+rj,2

(=U-6.5u)

HAM(NAF (vi,1’+v’i,2  - vj,1’-vj,2’))

(Case ri,1+ri,2=rj,1+rj,2)

M
U

• Theoretical and experimental results show:

– In 256-bit ECC,    8% (u=2), 6% (u=3), or 4% (u=4), and

– in 1024-bit RSA, 13% (u=2), 9% (u=3), or 6% (u=4) 

are tolerable for 16-bit random numbers ri.

• The attack efficiency decreases for increasing R but 
scales much better than the basic attack

HAM(NAF(vi,1’+v’i,2 - vj,1’-vj,2’))

(Case ri,1+ri,2rj,1+rj,2)

(*)NAF representation is used.
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Step E-3:Solve linear equations

• With enough equations dim(ker(B))=2
 We proved that a basis of ker(B) is given by

– (1,1,..,1) and

– (r1,…,rN) = correct random numbers used by the device 

r1+r3=r2+r5

r2+r3=r4+r6

r2+r4=r3+r5
B

r1

r2

r3

r4

r5

r6

=

0
0
0
0
0
0

ri„s are revealed (up to an additive shift)

Obtained equations from Step E-2
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Step E-3:How many linear 
equations/power traces are required?

R

u uc

uu

N
equationslinearE

2

)(

!!2
)(#

2



• Theory

where  N: number of power traces 
R: bit length of the random number

)4(
3

)(,
20

11
)3(,

3

2
)2(  u

u
uccc


• Experiments

u=2 u=3 u=4

N 116 128 28 32 16 20

rate on 
dim(ker(B))=2

43/50 49/50 49/50 50/50 12/50 50/50

Estimated number of power traces (theory)

#power traces is reduced to 128 (u=2), 32 (u=3) or 20 (u=4)
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Step E-4:Experimental results

e N success rate

0.13 25 99.7%

0.13 30 100%

0.08 16 100%

0.08 10 91%

• ECC (log2d=256, log2ri=16, 300 trials)

• RSA (log2d=1024, log2ri=16, 300 trials)

e N success rate

0.13 100 99%

0.13 128 100%

0.08 45 95%

0.08 35 74%

Tolerates 13% error in both ECC and RSA

e: error ratio
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●Summary and conclusion
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Summary
• Comparison of the proposed attack

• Countermeasure

–Using large random numbers

–  64-bit random numbers should suffice

u R error rate # of power trace

ECC RSA ECC RSA

Basic - 10 23% 28% 7425 23682

- 16 20% maybe 
~26%

137000 maybe 
as ECC

Enhanced 2 16 8% 13% 128 128

3 16 6% 9% 32 32

4 16 4% 6% 20 20
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Conclusion (I)
• We proposed two novel attacks that can break

S&aM (SPA countermeasure) combined with 
exponent blinding (DPA countermeasure), 

even when the observed exponents include error bits

– Basic attack:
principally tolerates higher error rates ( 20%), 
but even moderate t‟s require (≥ O(2R)) power 
traces and many comparisons (≥ O(22R));
Attacks on R  24 (probably also for larger R) 
should definitely be feasible.
If the number of power traces is (significantly) 
smaller than 2R/2 even 2-birthdays will not occur.
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Conclusion (II)

– Enhanced attack:
tolerates lower error rates ( 13%), 
but requires only a small number of power traces 
( 128 for R=16)
Attacks on R  40 (probably also for larger R) 
should definitely be feasible.

• We showed the effectiveness of our attack both 
theoretically and experimentally

• For increasing R the efficiency of both attacks 
decreases but the enhanced attack scales much better
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Thank you for your attention!


