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Encryption Schemes 

Must share 

a secret-key 

Don’t share 

a secret-key 

Computational SKE PKE 

Unconditional One-time pad 



Does there exist ? 

Must share 

a secret-key 

Don’t share 

a secret-key 

Computational SKE PKE 

Unconditional One-time pad ??? 



Yes 

• (1975) Wyner  

                Wire-tap channel model  

• (1984) Bennett and Brassard  

                BB84 

• (1993) Dolev, Dwork, Waarts and Yung 

                Network model 



In the model of DDWY 

• Alice and Bob are a part of a network 

• There are n channels between them 

• Adversary can corrupt (listen and forge)  

        at most t channels 

Alice Bob 



Indeed, in Internet 

• There are many channels  

     between A and B 

• No adversary can corrupt all the routers 



A scheme should satisfy 

 

• (Perfect Privacy)  

       Adversary learns no information on  

       the secret message s  

• (Perfect Reliability) 

       Bob can receive s correctly        

       (Adversary cannot forge s) 

 



PSMT denotes 

• Perfectly  

• Secure  

• Message  

• Transmission  

• Scheme 



We consider  

an Undirected Network 

• Each channel is two-way 

Alice Bob 



1 Round Protocol 

Sender 
Receiver 



2 Round Protocol 

Sender 
Receiver 

Sender 
Receiver 

1st 

2nd 



PSMT exists 

1-round iff n ≧ 3t+1 

2-round iff n ≧ 2t+1 

where the adversary can corrupt  
 t out of n channels. 



Almost PSMT  

requires 

• (Perfect Privacy)  

       Adversary learns no information on  

       the secret message s  

• (Almost Perfect Reliability) 

       Pr[Bob can receive s] > 1- ε 

 



If n≧2t+1, 

PSMT 

requires 

2 rounds 

Almost PSMT 

requires 

only 1 round 



PSMT Almost PSMT 

Threshold adversary We have seen We have seen 

How about  

General adversary 

? ? 

So far 



Desmedt et at. 

• Threshold adversaries are not realistic 

• when dealing with computer viruses, 

• such as  

• the I LOVE YOU virus  

• and the Internet virus/worm  

• that only spread to 

• Windows, respectively Unix. 



{1,2,3} use Windows 
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Sender Receiver 



{3,4} use UNIX 
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Sender Receiver 



{1,5} use TRON 
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Sender Receiver 



Adversary can corrupt 

       B1={1,2,3} or B2={3,4}  or B3={1,5}. 

• Let  

            Γ={B1, B2, B3} 

• Such Γ is called an adversary structure. 



Monotone 

• We say that Γ is monotone 

   if B ∈Γ and B’⊂B, then B’ ∈Γ 

• For example. 

   if an adversary can corrupt B={1,2,3},  

   then she can corrupt B’={1,2} clearly. 

• In what follows,  

   we assume that Γ is monotone 

 



Hirt and Maurer 

• Introduced adversary structure  

   in the context of multiparty protocols 

• They generalized  

        n≧2t+1 to Q2 adversary structure 

        n≧3t+1 to Q3  adversary structure 



Γ satisfies Q2 

• If  

        Bi ⋃ Bj   ≠ {1, ⋯, n} 

• for any Bi, Bj ∊ Γ 



Γ={B1, B2, B3} 

• Such that 

     B1={1,2,3}, B2={3,4}, B3={1,5}. 

• is Q2 because 

       B1 ⋃ B2   = {1,2,3,4} ≠ {1, ⋯, 5} 

       B1 ⋃ B3   = {1,2,3,5} ≠ {1, ⋯, 5} 

       B2 ⋃ B3   = {1,3,4,5} ≠ {1, ⋯, 5} 

 



Γ satisfies Q3 

• If  

        Bi ⋃ Bj ⋃ Bk  ≠ {1, ⋯, n} 

• for any Bi, Bj, Bk ∊ Γ 



1-round PSMT iff Γ satisfies Q3 

2-round PSMT iff Γ satisfies Q2 

For general adversaries, 



PSMT Almost PSMT 

Threshold adversary We have seen We have seen 

General adversary We have seen 



PSMT Almost PSMT 

Threshold adversary We have seen We have seen 

General adversary We have seen ? 

? is  



For the ? 

• Patra, Choudhary, Srinathan, and Rangan 

• showed an almost PSMT for Q2. 

 

However,  

• At least 3 rounds 

• Exponential time 



This paper shows 

• An efficient 1 round almost PSMT for Q2 

 
# of 

rounds 

Efficiency 

Patra et al. At least 3 Inefficient 

Our scheme 1 Efficient 



Hence  

for Q2 adversary structure, 

PSMT 

requires 

2 rounds 

Almost PSMT 

requires 

only 1 round 

(This paper) 



In a Secret Sharing Scheme 

• For a secret s,  

   Dealer computes a share vector  

               (share1, ⋯ , sharen), 

     and gives sharei to player Pi 



Proposition 

For any adversary structure Γ, 

there exists a linear secret sharing scheme 

(LSSS)  

such that 

• if B ∈ Γ, then B has no information on s 

• if A ∉ Γ, then A can reconstruct s 

We call it an LSSS for Γ 



In a LSSS 

 

 

matrix

M 

s 

 

 
ra

n
d
o
m

  v
e
c
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r 
× 

share1 

sharen 

⋮ 

A share vector is computed by multiplying 

        (s, random vector) 

to some matrix M 



In our 1 round almost PSMT  

• We are given:  

 An adversary structure  satisfying Q2 condition 

• We then use an LSSS for this  

• Suppose that the sender wants to send  a message  

   (s1, ⋯, sL)  to the receiver. 



For s1, sender computes 

LSSS s1 

random 
share11 

 

⋮ 
 

share1n 



Sender sends to the receiver 

share11 
channel 1 

share1n 
channel n 

⋮ 



For s2, sender computes 

LSSS s2 

random 
share21 

 

⋮ 
 

share2n 



Sender sends to the receiver 

share11, share21 
channel 1 

channel n 

⋮ 

share1n, share2n 



and so on 

share11, share21, ⋯, shareL1 
channel 1 

channel n 

⋮ 

share1n, share2n, ⋯, shareLn  



Adversary learns no information 

on each si 

• because Adv can listen to  

   only a subset of channels B ∈ Γ  

• From our property of the LSSS, 

   B ∈ Γ give no information on si 



However 

• Adv may forge the shares in B ∈ Γ  

• To detect this forgery,  

   Sender sends some  additional 

authentication information. 



To authenticate 

share11, share21, ⋯, shareL1 
channel 1 

channel n 

⋮ 

share1n, share2n, ⋯, shareLn  



We consider polynomials 

p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 

channel 1 

channel n 

⋮ 

pn(x) = share1n + share2n x + ⋯+ shareLn x
L-1 



To authenticate p1(x) 

p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 

channel 1 

⋮ 

channel n 

random αn and p1(αn)
 

 channel 2 

random α2 and p1(α2)
 



Receiver substitutes x=α2 

p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 

channel 1 

 channel 2 

 α2 and p1(α2)
 



R substitutes x=αn 

p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 

channel 1 

⋮ 

channel n 

αn and p1(αn)
 



Suppose that p1(x) is forged 

p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 

channel 1 is 

corrupted 

channel 2 is not 

corrupted 

 α2 and p1(α2)
 

Prα2 [ p1(α2) = p1(α2) ]≦(L-1)/|F| 

 

where L-1=deg p1(x) and 

the LSSS is computed  over a finite field F 



But 

• Suppose that channel 1 is not corrupted 

   and channel i is corrupted. 

• Then 

   (αi, p1(αi)) leaks some information on 

 p1(x) = share11 + share21 x + ⋯+ shareL1 x
L-1 



Sender hides p1(αi) as follows 

p1(x) and  k12, ⋯, k1n 

channel 1 

⋮ 

 channel 2 

α2 and p1(α2)+k12 

channel n 

αn and p1(αn)+k1n 

This is one-time pad 



We do the same thing  

• For p2(x), …, pn(x) 



Again forged p1(x) is detected 

p1(x) and k12 
channel 1 is 

corrupted 

channel 2 is not 

corrupted 

 α2 and p1(α2)+k12 

with  

        Prα2 [ p1(α2) +k12 ≠p1(α2) +k12 ]≧1- (L-1)/|F| 

 



Lemma 

• If p1(x) is forged, 

• then  

   it is rejected by a correct channel i 

   with prob.  

  1 −
𝐿 − 1

|𝐹|
 



Next Receiver 

• Reconstructs the message  

    (s1, …,sL)  

  as follows. 



Proposition 

• If Γ is Q2, then for any B ∈Γ,  

            Bc ∉Γ 

(Proof) 

• Suppose that Bc ∈Γ. 

• Then  

        B and Bc ∈Γ   

        B ⋃ Bc={1, ⋯, n} 

• This is against Q2 



{1,2,3} ∈Γ and  {4,5} ∉Γ  

S R 3 

2 

1 

4 

5 



S R 

p1(x) and  k12, ⋯, k15 

α2 and p1(α2)+k12 

α3 and p1(α3)+k13 

α4 and p1(α4)+k14 

α5 and p1(α5)+k15 

Look at p1(x) 



S R 

p1(x) and  k12, ⋯, k15 

α2 and p1(α2)+k12 

α3 and p1(α3)+k13 

α4 and p1(α4)+k14 

α5 and p1(α5)+k15 

Adversary 

Suppose that 



S R 

p1(x) and  k12, ⋯, k15 

α2 and p1(α2)+k12 

α3 and p1(α3)+k13 

α4 and p1(α4)+k14 

α5 and p1(α5)+k15 

Then the forged  p1(x) is rejected 

 by channels {4 and 5} ∉ Γ 



S R 

p1(x) and  k12, ⋯, k15 

α2 and p1(α2)+k12 

α3 and p1(α3)+k13 

α4 and p1(α4)+k14 

α5 and p1(α5)+k15 

Adversary 

Suppose that  



S R 

p1(x) and  k12, ⋯, k15 

α2 and p1(α2)+k12 

α3 and p1(α3)+k13 

α4 and p1(α4)+k14 

α5 and p1(α5)+k15 

In this case,  p1(x) is not forged and 

p1(x) is rejected by channels {3 and 4} ∈ Γ 



Hence 

then p1(x) is rejected  

If p1(x) is forged, by some A ∉ Γ  

If p1(x) is not forged, by some B ∈ Γ 



So Receiver behaves as follows 

If p1(x) is rejected  Then Receiver  

by some A ∉ Γ rejects p1(x) 

by some B ∈ Γ accepts p1(x) 



Lemma 

• If p1(x) is forged, 

   R rejects it with high probability 

• Otherwise 

   R accepts it correctly 

 



S R 

p1(x) 

p2(x) 

Adversary 

p3(x) 

p4(x) 

p5(x) 



S R 

p1(x) 

p2(x) 

Adversary 

p3(x) 

p4(x) 

p5(x) 

Receiver rejects 

with high prob. 

Receiver accepts 

correctly 

From Lemma, 



S R 

4 

5 

p1(x) 

p2(x) 

Adversary 

p3(x) 

p4(x) 

p5(x) 

Receiver rejects 

with high prob. 

Receiver accepts 
Further {4,5} ∉ Γ 

Hence  

   {4,5} is an access set of the LSSS 



Receiver accepts  

p4(x) = share14 + share24 x + ⋯+ shareL4 x
L-1 

p5(x) = share15 + share25 x + ⋯+ shareL5 x
L-1 

 

 



Since {4,5} is an access set of 

the LSSS  
p4(x) = share14 + share24 x + ⋯+ shareL4 x

L-1 

p5(x) = share15 + share25 x + ⋯+ shareL5 x
L-1 

 

 
s1 

Receiver can reconstruct 



Since {4,5} is an access set  

p4(x) = share14 + share24x + ⋯+ shareL4 x
L-1 

p5(x) = share15 + share25 x + ⋯+ shareL5 x
L-1 

 

 
s1 

s2 

Receiver can reconstruct 



Since {4,5} is an access set  

p4(x) = share14 + share24x + ⋯+ shareL4 x
L-1 

p5(x) = share15 + share25 x + ⋯+ shareL5 x
L-1 

 

 
s1 

s2 sL ⋯ 

Receiver can reconstruct 



Theorem  

• Our protocol satisfies perfect privacy 

• It also satisfies almost perfect reliability 

 



The computational cost 

• is polynomial in the size of the LSSS 

 



The size of LSSS (=d) 

 

 

 

M 

s 
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× d 

is the # of rows of the matrix M 



The communication cost 

• Sender sends O(Ld+d2) field elements, 

   where d is the size of the LSSS 



As a special case,  

• For threshold adversaries s.t. n≧2t+1, 

   (adversary can corrupt t channels), 

• our scheme is more efficient  and simpler 

than the existing almost PSMT 



Lower bound  

• For threshold adversaries given by 

   Patra, Choudhary, Srinathan and Rangan  

 

• In any 1-round almost PSMT with n=2t+1, 

   Sender must send Ω(nL) field elements  

   to send a message (s1, ⋯, sL) 

 



Patra et al. also showed 

• A construction of 

   1-round almost PSMT for n=2t+1 

   which satisfies their bound   



However 

• It is complex 

• It uses extrapolation technique, 

   extracting randomness and etc. 



Our almost PSMT 

• Also satisfies the bound of Patra et al. 

   if L ≧ n 

• Further  

   it is more efficient and much simpler 

 

 



Summary 

PSMT 

requires 

2 rounds 

Almost PSMT 

requires 

only 1 round 

(This paper) 

We showed an efficient  

1-round almost PSMT for Q2 



As a special case,  

• For threshold adversaries s.t. n≧2t+1, 

• our scheme is more efficient  and simpler 

   than the previous almost PSMT 


