
Security Notions for Broadcast Encryption

Security Notions for Broadcast
Encryption

D. Hieu Phan, David Pointcheval, Mario Strefler

ENS
strefler@di.ens.fr

2011 June 09

1 / 28

Security Notions for Broadcast Encryption

1 Motivation

2 Our security model

3 Fully adaptive security

4 Choice of the target set

5 A fully secure scheme

6 Conclusion

2 / 28

Security Notions for Broadcast Encryption

Motivation

Broadcast Encryption
N users {u1, . . . uN} = U

Here: Key encapsulation mechanism

Goal: Encrypt K to any S ⊂ U

Security definition? (Different in most papers)

3 / 28

Security Notions for Broadcast Encryption

Our security model

Security of BE
(MSK,EK)← Setup(1k)

EKXXXXXXz A
��
�*����

Join()
-� Corrupt()HHHjHH

HY

Decaps()
������9

S

(H ,K)← Enc(EK, S)

Kb ← K ,K1−b
$← K

H ,K0,K1XXXXXXz ��
�*����

Join()
-� Corrupt()HH
HjHH

HY

Decaps()
������9

b ′

win if b = b ′

Restrictions:
no corrupted users in S
don’t query decaps on H

4 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle

Choice of the target set

EKXXXXXXz A������9
S

H ,K0,K1XXXXXXz
������9

b ′

5 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions
Dynamic (join oracle)

static (fixed at setup)

dynamic1
dynamic2

Adaptive corruption

Decryption oracle

Choice of the target set

EKXXXXXXz A

������9

n

������9
S

H ,K0,K1XXXXXXz
������9

b ′

6 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions
Dynamic (join oracle)

static (fixed at setup)
dynamic1

dynamic2

Adaptive corruption

Decryption oracle

Choice of the target set

EKXXXXXXz A
�
��*����

Join()

������9
S

H ,K0,K1XXXXXXz
������9

b ′

7 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions
Dynamic (join oracle)

static (fixed at setup)
dynamic1
dynamic2

Adaptive corruption

Decryption oracle

Choice of the target set

EKXXXXXXz A
�
��*����

Join()

������9
S

H ,K0,K1XXXXXXz �
��*����

Join()

������9
b ′

8 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)
Adaptive corruption

no corruption

selective corruption
adaptive1
adaptive2

Decryption oracle

Choice of the target set

EKXXXXXXz A������9
S

H ,K0,K1XXXXXXz
������9

b ′

9 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)
Adaptive corruption

no corruption
selective corruption

adaptive1
adaptive2

Decryption oracle

Choice of the target set

EKXXXXXXz A

������9

C

������9
S

H ,K0,K1XXXXXXz
������9

b ′

10 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)
Adaptive corruption

no corruption
selective corruption
adaptive1

adaptive2

Decryption oracle

Choice of the target set

EKXXXXXXz A -� Corrupt()������9
S

H ,K0,K1XXXXXXz
������9

b ′

11 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)
Adaptive corruption

no corruption
selective corruption
adaptive1
adaptive2

Decryption oracle

Choice of the target set

EKXXXXXXz A -� Corrupt()������9
S

H ,K0,K1XXXXXXz -� Corrupt()������9
b ′

12 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption
Decryption oracle

CPA

CCA1
CCA2

Choice of the target set

EKXXXXXXz A������9
S

H ,K0,K1XXXXXXz
������9

b ′

13 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption
Decryption oracle

CPA
CCA1

CCA2

Choice of the target set

EKXXXXXXz A
HHHjHH
HY

Decaps()
������9

S

H ,K0,K1XXXXXXz
������9

b ′

14 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption
Decryption oracle

CPA
CCA1
CCA2

Choice of the target set

EKXXXXXXz A
HHHjHH
HY

Decaps()
������9

S

H ,K0,K1XXXXXXz
HHHjHH
HY

Decaps()
������9

b ′

15 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle
Choice of the target set

chosen before setup

fixed to include all
noncorrupted users
chosen by the adversary

EKXXXXXXz A

������9

S

H ,K0,K1XXXXXXz
������9

b ′

16 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle
Choice of the target set

chosen before setup
fixed to include all
noncorrupted users

chosen by the adversary

EKXXXXXXz A������9

H ,K0,K1XXXXXXz
������9

b ′

17 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle
Choice of the target set

chosen before setup
fixed to include all
noncorrupted users
chosen by the adversary

EKXXXXXXz A������9
S

H ,K0,K1XXXXXXz
������9

b ′

18 / 28

Security Notions for Broadcast Encryption

Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle

Choice of the target set

Consider these independently

Cannot corrupt users that
don’t exist

Interactions between
corruption and choice of
target set

EKXXXXXXz A������9
S

H ,K0,K1XXXXXXz
������9

b ′

19 / 28

Security Notions for Broadcast Encryption

Fully adaptive security

Adaptive Corruption
The security model of [GW09]:

Setup: (ek, dk)← KeyGen(1k)

Give ek to AOCorrupt(·)

Encrypt to adversarially chosen S

No second phase
Is there a difference? (as for CCA1 vs. CCA2)

20 / 28

Security Notions for Broadcast Encryption

Fully adaptive security

Separating Adaptive1 from Adaptive2
Only for t-collusion-resilient schemes, with t
and (N − t) non-constant

Reason:
(

t
N

)
exponential

Approach:

Take an Ad1-secure BE scheme Π

Modify Π so it is clearly Ad2-insecure, but
remains Ad1-secure

21 / 28

Security Notions for Broadcast Encryption

Fully adaptive security

Separating Example
Π′.Encaps(EK, S):

(H ′,K)← Π.Encaps(EK, S);
Choose a random subset I ⊂ U , with |I | = t ;
∀i ∈ I : (Hi ,Ki)← Π.Encaps(EK, {i})
Set K0 = K

⊕
i∈I Ki ;

return(H ′,K0, {Hi}i∈I),K .

Only for CPA and CCA1
Example for CCA2 is more complicated

22 / 28

Security Notions for Broadcast Encryption

Choice of the target set

Choice of the Target Set
Model in [DF03]: Target set is automatically the set
of uncorrupted users

Setup: (ek, dk)← KeyGen(1k)

Give ek to AOCorrupt(·)

Encrypt to anybody but R

Is there a difference? (Restricts the adversary)

23 / 28

Security Notions for Broadcast Encryption

Choice of the target set

Separating modes of choosing S

Theorem
All the following implications are strict.
In a model with no corruption or selective corruption,
choice of the target set ⇒ fixed taget set.
In a model with adaptive1 or adaptive2 corruption:

For fully collusion-resilient BE schemes,
choice of the target set ⇔ fixed taget set.

If the adversary must leave two users uncorrupted,
choice of the target set ⇒ fixed taget set.

24 / 28

Security Notions for Broadcast Encryption

Choice of the target set

Equivalence (choice ⇔ fixed)
Assume a fully collusion-secure scheme.

⇒ If adversary can choose S , can set it to U \ C.
⇐ Let Achoice be a successful adversary who can

choose S . Then we construct Afixed as follows:
Afixed faithfully forwards all queries.
When Achoice outputs his challenge target set S ,
Afixed corrupts users so that U \ C = S , then asks
for the challenge and forwards it to Achoice .
He forwards the guess bit b and wins with the
same probability as Achoice .

Afixed corrupts more users, which could reduce the
tightness of a security proof.

25 / 28

Security Notions for Broadcast Encryption

Choice of the target set

Separation (choice ⇒ fixed)
If the adversary must leave two users uncorrupted:

If not all users can be corrupted, proof fails

In this case, Achoice can choose S with |S | = 1

Separating example: Scheme with pathological
behaviour if |S | = 1 (e.g. K = 0)

26 / 28

Security Notions for Broadcast Encryption

A fully secure scheme

Fully secure naive scheme
Let PKE be an IND-CCA2 secure PKE scheme
with key length κ, MAC a SUF-CMA MAC.

Setup(1k) MSK
def
= ∅; EK

def
= ∅; Reg

def
= ∅

Join(MSK, i) (pki , ski)← PKE .KeyGen(1k).

Encaps(EK, S): K ,Km
$←− {0, 1}k ;

∀i ∈ S : ci ← PKE .Enc(pki ,K ||Km);
σ ←MACKm

(c1|| . . . ||c|S |);

H
def
= c1|| . . . ||c|S |||σ

Decaps(ski , S ,H): K ||Km = PKE .Dec(ski , ci)
ifMAC.Verify(Km , σ, c1|| . . . ||c|S |) return K ,
else return ⊥

27 / 28

Security Notions for Broadcast Encryption

Conclusion

Summary
We

Defined a clean hierarchy of security notions

Showed separations / equivalence between all
notions

Showed that schemes exist that fulfill the
strongest notion

28 / 28

	Motivation
	Our security model
	Fully adaptive security
	Choice of the target set
	A fully secure scheme
	Conclusion

