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Motivation

Broadcast Encryption
N users {u1, . . . uN} = U

Here: Key encapsulation mechanism

Goal: Encrypt K to any S ⊂ U

Security definition? (Different in most papers)
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Our security model

Security of BE
(MSK,EK)← Setup(1k)

EKXXXXXXz A
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�*����

Join()
-� Corrupt()HHHjHH

HY

Decaps()
������9

S

(H ,K )← Enc(EK, S )

Kb ← K ,K1−b
$← K

H ,K0,K1XXXXXXz ��
�*����

Join()
-� Corrupt()HH
HjHH

HY

Decaps()
������9

b ′

win if b = b ′

Restrictions:
no corrupted users in S
don’t query decaps on H
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Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle

Choice of the target set
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Our security model

Security Notions
Dynamic (join oracle)

static (fixed at setup)

dynamic1
dynamic2

Adaptive corruption

Decryption oracle

Choice of the target set
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Our security model

Security Notions

Dynamic (join oracle)
Adaptive corruption

no corruption

selective corruption
adaptive1
adaptive2

Decryption oracle
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Our security model
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Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle
Choice of the target set

chosen before setup

fixed to include all
noncorrupted users
chosen by the adversary
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Our security model

Security Notions

Dynamic (join oracle)

Adaptive corruption

Decryption oracle

Choice of the target set

Consider these independently

Cannot corrupt users that
don’t exist

Interactions between
corruption and choice of
target set
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Fully adaptive security

Adaptive Corruption
The security model of [GW09]:

Setup: (ek, dk)← KeyGen(1k)

Give ek to AOCorrupt(·)

Encrypt to adversarially chosen S

No second phase
Is there a difference? (as for CCA1 vs. CCA2)
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Fully adaptive security

Separating Adaptive1 from Adaptive2
Only for t-collusion-resilient schemes, with t
and (N − t) non-constant

Reason:
(

t
N

)
exponential

Approach:

Take an Ad1-secure BE scheme Π

Modify Π so it is clearly Ad2-insecure, but
remains Ad1-secure
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Fully adaptive security

Separating Example
Π′.Encaps(EK, S ):

(H ′,K )← Π.Encaps(EK, S );
Choose a random subset I ⊂ U , with |I | = t ;
∀i ∈ I : (Hi ,Ki)← Π.Encaps(EK, {i})
Set K0 = K

⊕
i∈I Ki ;

return(H ′,K0, {Hi}i∈I ),K .

Only for CPA and CCA1
Example for CCA2 is more complicated
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Choice of the target set

Choice of the Target Set
Model in [DF03]: Target set is automatically the set
of uncorrupted users

Setup: (ek, dk)← KeyGen(1k)

Give ek to AOCorrupt(·)

Encrypt to anybody but R

Is there a difference? (Restricts the adversary)
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Choice of the target set

Separating modes of choosing S

Theorem
All the following implications are strict.
In a model with no corruption or selective corruption,
choice of the target set ⇒ fixed taget set.
In a model with adaptive1 or adaptive2 corruption:

For fully collusion-resilient BE schemes,
choice of the target set ⇔ fixed taget set.

If the adversary must leave two users uncorrupted,
choice of the target set ⇒ fixed taget set.
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Choice of the target set

Equivalence (choice ⇔ fixed)
Assume a fully collusion-secure scheme.

⇒ If adversary can choose S , can set it to U \ C.
⇐ Let Achoice be a successful adversary who can

choose S . Then we construct Afixed as follows:
Afixed faithfully forwards all queries.
When Achoice outputs his challenge target set S ,
Afixed corrupts users so that U \ C = S , then asks
for the challenge and forwards it to Achoice .
He forwards the guess bit b and wins with the
same probability as Achoice .

Afixed corrupts more users, which could reduce the
tightness of a security proof.
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Choice of the target set

Separation (choice ⇒ fixed)
If the adversary must leave two users uncorrupted:

If not all users can be corrupted, proof fails

In this case, Achoice can choose S with |S | = 1

Separating example: Scheme with pathological
behaviour if |S | = 1 (e.g. K = 0)
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A fully secure scheme

Fully secure naive scheme
Let PKE be an IND-CCA2 secure PKE scheme
with key length κ, MAC a SUF-CMA MAC.

Setup(1k) MSK
def
= ∅; EK

def
= ∅; Reg

def
= ∅

Join(MSK, i) (pki , ski)← PKE .KeyGen(1k).

Encaps(EK, S ): K ,Km
$←− {0, 1}k ;

∀i ∈ S : ci ← PKE .Enc(pki ,K ||Km);
σ ←MACKm

(c1|| . . . ||c|S |);

H
def
= c1|| . . . ||c|S |||σ

Decaps(ski , S ,H ): K ||Km = PKE .Dec(ski , ci)
ifMAC.Verify(Km , σ, c1|| . . . ||c|S |) return K ,
else return ⊥

27 / 28



Security Notions for Broadcast Encryption

Conclusion

Summary
We

Defined a clean hierarchy of security notions

Showed separations / equivalence between all
notions

Showed that schemes exist that fulfill the
strongest notion
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