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Abstract

Advanced Persistent Threats (APTs) have become a serious hazard for any
critical infrastructure, as a single solution to protect all industrial assets from these
complex attacks does not exist. It is then essential to understand what are the
defense mechanisms that can be used as a first line of defense. For this purpose, this
article will firstly study the spectrum of attack vectors that APTs can use against
existing and novel elements of an industrial ecosystem. Afterwards, this article
will provide an analysis of the evolution and applicability of Intrusion Detection
Systems (IDS) that have been proposed in both the industry and academia.
Keywords: SCADA, Industrial Control, Intrusion Detection, APT, Industry 4.0

1 Introduction
Critical Infrastructures like nuclear plants of power grids have their production cycle
managed by industrial control systems, such as SCADA (Supervisory Control and Data
Acquisition) systems. These industrial networks comprise a wide range of devices
such as sensors, PLCs (Programmable Logic Controllers), or RTUs (Remote Terminal
Units), that ultimately gather real-time data about the production chain and accordingly
issue control commands to regulate the entire process remotely.

Traditionally, SCADA systems and industrial networks have been working in an
isolated way during decades, since all the aforementioned devices used to run propri-
etary communication protocols in a closed environment. However, they are nowadays
being interconnected to external networks (e.g., Internet) for the outsourcing of ser-
vices and the storage of data. Amongst the reasons of this tendency are the decrease in
costs and the standardization of hardware and software used in industrial control sys-
tems (ICS). Namely, industrial communication protocols working with Ethernet and
TCP/IP, such as Ethernet/IP, Ethernet POWERLINK, CANopen, PROFINET, Mod-
bus/TCP or HART/IP; and also fieldbus protocols (e.g., HART, wirelessHART, ether-
CAP, IO-Link). Additionally, there are other protocols designed for the management
and control of all industrial equipment, such as the CIP or OPC UA. As a result of
this evolution, the complexity of communication infrastructures in ICS is dramatically
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increasing. However, this is just the beginning: new paradigms like IoT (Internet of
Things) or Cloud computing are also being integrated into current industrial environ-
ments, giving shape to the so-called Industry 4.0 [1]. Under this concept, all industrial
entities are able to collaborate with each other so as to take real-time decisions in a
distributed way, enabling the deployment of innovative industrial services of all kinds.

Consequently, this modernization of the industry with the introduction of IT tech-
nologies is coupled with a substantial increase in security risks [2] based on new spe-
cific threats, operating under different threat modes [3] that have not been addressed
before. As a result, an industrial system becomes complex and critical, besieged by
multiple attack vectors that can be ultimately leveraged to perpetrate an Advanced Per-
sistent Threat (APT) [4, 5]. This represents a sophisticated attack perpetrated by an
expert adversary, and is characterized for its ability to go undetected within the victim
network for a certain period of time. Due to the complexity of these attacks – which
involve several steps – and the high amount of successful APT campaigns perpetrated
by malicious actors [6], it is crucial to understand what is the true scope and detection
capabilities of the first line of defense; that is, existing Intrusion Detection Systems
(IDS).

This article is an extended version of the conference paper [7]. It explores the ex-
isting techniques and mechanisms that try to detect specific threat vectors within an
industrial context, making emphasis on the special case of APTs but without losing
sight of the future industrial paradigms. The remainder of this article is organized as
follows: Section 2 highlights the threats to which control systems are exposed today.
Taking into account this landscape, Section 3 addresses the search for defense tech-
niques against APTs, specially intrusion detection systems. Solutions from both the
industry and academia are presented in Sections 4 and 5, respectively. Finally, Section
6 discusses the application of these mechanisms in practice, and the conclusions drawn
are presented in Section 7.

2 Cybersecurity threats
After several years of being subject to a multitude of threats [8], today’s industry is still
at risk. According to the annual reports of ICS-CERT [9], IBMR© X-ForceR© Research
[10], and Sikich [11], the number of threats has tended to rise annually in the manufac-
turing industry, either because of unforeseen occurrences or through planned actions.
Irrespective of the causes, the consequences affect the normal performance of control
and industrial process, thereby affecting the expected production rate and the final dis-
tribution to end-users. This situation is unfortunately aggravated when interconnecting
traditional technologies and information systems to production environments. For the
purposes of our analysis, both types of attack vectors that affect the industrial environ-
ment (i.e., the ones inherited from the traditional industrial systems and those arisen
with the interconnection of IT technologies) can be classified following the taxonomy
given by the IETF standard-7416 [12], in which the threats are grouped according to the
attack goals against the minimum security services [13] such as availability, integrity,
confidentiality and authentication.
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2.1 Traditional Threats in IS and ICS
Availability threats: apart from the typical subtraction of devices (e.g. PLC and RTU)
or communication infrastructures, it is essential to highlight the threats related to (dis-
tributed) denial of services ((D)DoS) attacks, the techniques of which mainly focus on
the routing (e.g. relay attacks, selective forwarding, grey hole, black hole or botnets).
Integrity threats: includes from the typical sabotage of the industrial equipment to the
injection of malware [14] to slow down the operational performance, obtain sensitive
information, modify the operation of the devices, etc. These threats are also related to
the alteration of the industrial communication protocols and/or the real traffic values
produced by field devices, controllers or corporate network equipment. Impersonation
of nodes and spoofing are also applicable to an industrial context, due in part to the
susceptibility to Man-in-the-Middle attacks and the existing weaknesses of the indus-
trial communication protocols. We also have to consider that the vast majority of such
protocols are still legacy protocols, in the sense that they were originally designed to
transfer control information without considering various cybersecurity requirements
such as authentication between peers, integrity of messages, or the confidentiality of
the communication channels.
Confidentiality threats: within this category the illicit disclose techniques through
passive traffic analysis (regarding topologies and routes) and theft of sensitive data
(related to industrial process, customers, administration) or configurations should be
highlighted. An example of information theft is that achieved by injecting code in
the operational applications (often webs through cross-site scripting (XSS) or SQL
Injection) so as to obtain or corrupt the control measurements/actions, the company
and/or end-users privacy, or the security credentials.
Authentication/authorization threats: the authentication in this point includes those
attackers that generally try to escalate privileges by taking advantage of a design flaw
or vulnerability in the software in order to gain unauthorized access to protected re-
sources. For example, according to the IBMR© X-ForceR© research report [10], 45% of
all attacks registered in 2015 focused on unauthorized accesses, followed by malicious
code (29%) and sustained probe/scan (16%) attacks. In order to carry out these attacks,
attackers need to apply specific social engineering techniques (e.g. phishing attacks,
chain of spam letters) to collect strategic information from the system. Apart from
this, the easy mobility of in-plant operators and their interactions through the use of
hand-held interfaces (smart-phones, tablets, laptops) also lead to numerous security
problems, probably caused by mis-configurations or unsuitable access control, both at
the logical (use of simple passwords) and physical (access to equipment) level.

2.2 Present and future landscape of threats in IS and ICS
Besides addressing the aforementioned security issues, it is necessary to envision a set
of future security threats that might appear, especially pertinent when integrating new
trending technologies such as IoT or Cloud computing infrastructures. As explained
earlier, these technologies are already being applied to ICS and herald the so-called
fourth Industrial Revolution, or Industry 4.0 [1].
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2.2.1 Industrial Internet of Things threats

IoT interconnects sensors and all kinds of devices with Internet networks, to gather
information about physical measures, location, images, etc. The Industrial IoT (IIoT)
specifically pursues a vertical integration among all the components that belong to the
industrial architecture, ranging from machines to operators or the product itself. With
respect to security, the situation is further complicated when we take into consideration
the scarce autonomy and computational resources that these devices have. Continuing
with the IETF standard 7416 [12], we can distinguish the following range of threats:
Availability threats: comprises the disruption of communication and processing re-
sources: firstly, against the routing protocol [15], influencing its mode of operation
(creating loops, modifying routes, generating errors, modifying message delays, etc.)
through different attacks, which can be directly committed at the physical level through
jamming or interferences. Secondly, against the equipment itself, including the exhaus-
tion of resources (processing, memory or battery) exploitation of vulnerabilities in the
software (as well as reverse engineering) that govern control devices such as PLCs, in
addition to running malicious code or malware: viruses, Trojans, etc. [16]. Thirdly, we
have to stress the data traffic disruption, undermining the functionality of the routers in
the network, causing a lack of availability of certain services. It is caused by vectors
such as selective forwarding, wormhole or sinkhole attacks.
Integrity threats: it means the manipulation of routing information to influence the
traffic and fragment the network, like a Sybil attack [17]. This becomes the gateway to
other attacks such as black hole or denial of service, causing the routes to pass through
the more congested nodes. The form of attack includes falsification of information (the
node advertises anomalous routes), routing information replay, physical compromise
of the device or attacks on the DNS protocol [18]. Node identity misappropriation
can also be taken into account, opening the door to other attacks that result in the
modification of data of all types.
Confidentiality threats: includes the exposure of information of multiple kinds: firstly,
the one related the state of the nodes and their resources (available memory, battery,
etc.). One way is the so-called side channel attacks [19], where the electromagnetic
emanations of devices leak information about the execution of certain operations. Sec-
ondly, it also includes the exposure of routing information and the topology, which
constitutes rich information for the attackers as it enables them to identify vulnerable
equipment. Since this information resides locally in the devices, attacks against the
confidentiality of this information will be directed at the device, either physically com-
promising it or via remote access. Lastly, it is also possible to have the exposure of
private data, usually collected by wearable devices belonging to operators within the
organization, which can reveal information about their performance at work or their
location. One attack vector could be the use of social engineering or phishing.
Authentication threats: we can highlight the impersonation and introduction of dummy
/ fake nodes, capable of executing code or injecting illegitimate traffic to potentially
control large areas of the network or perform eavesdropping. An attack vector consists
of the forwarding of digital certificates used in authentication protocols or physical
or network address spoofing. Escalation of privileges can also be faced as a conse-
quence of a non-existent or poor access control, when the attacker can take advantage
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Table 1: Overview of threats that affect industrial systems

Threats Traditional IIoT
Cloud

Comp.
APT-states Impact on

Control

in-plant
Corp. Net.

End

users

Availability Subtraction of devices X X E X

DDoS attacks X X X C, E, P X X

Attacks on-path X X C, E, T, F, P X X

Exhaustion of node resources X X C, E X X

Service theft X C, E X X

Integrity Incorrect configuration X X X C, E X X

Reverse engineering

and/or malware injection
X X X R, C, P, E, T, F X X

False data injection X X C, E, P X

Spoofing X X C, E X X X

Manipulation of routing information X X C, E, P X

Confidentiality Sensitive information theft X X X C, E, F X X X

Nodes status exposure

(side-channel attacks)
X X R, C, E, F X

Passive traffic analysis X X R, C, E, T, F, P X X

Infrastructure information exposure

(shared memory systems attacks)
X C, E, T, F, P X X X

AAA Privilege escalation X X X C, E, P X X X

Social engineering X X R, C, E X X X

Deficient control access X X X C, E X X X

Impersonation of nodes

(fake/dummy nodes)
X X C, E X

of design flaws or vulnerabilities in IoT devices to access protected resources without
authorization.

2.2.2 Cloud Computing threats

In recent years cloud computing has changed the way in which information technology
(IT) is managed, through an environment that provides on-demand resources over the
Internet with a low cost of investment and easy deployment. For our work, cloud com-
puting acquires dual importance. On the one hand, many organizations use the cloud to
provide IoT services, acquiring sensor data and sending commands to actuators. On the
other hand, it is also necessary to take into account the delegation of certain analysis
and production processes to the cloud, in what is known as cloud-based manufactur-
ing [20]. The ultimate goal of this model is to enable customers to design, configure
and manufacture a product through a shared network of suppliers throughout its life
cycle, enhancing the efficiency and reducing costs. In summary, these factors make it
necessary to analyse the full range of threats that cloud computing faces [21][22]:
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Availability threats: This category includes the so-called service theft attack, which
takes advantage of the vulnerabilities and inaccuracies that exist in the scheduler com-
ponent of some hypervisors, where the service is charged considering the time spent
running virtual machines – instead of based on the CPU time in use. This can be ex-
ploited by attackers in order to use services at the expense of other clients, making
sure that the processes of interest are not executed at each tick of the scheduler. We
also contemplate denial of service attacks: the attacker causes the service to become
inaccessible for its legitimate users. This is the most serious type of attack on cloud
computing, because of the ease with which it can be carried out and the difficulties in
preventing them.
Integrity threats: the most important one comes with a malware injection attack,
where the attacker replicates the service instance that is provided to a client (a vir-
tual machine, for example) and replaces it with a manipulated one that is hosted again
in the cloud. This means that requests sent by the legitimate user are processed in the
malicious service, and the attacker can access the exchanged data. To do this, the most
common way is to appropriate access privileges or introduce malware into multiple
format files, jeopardizing the confidentiality and privacy of the data.
Confidentiality threats: firstly, side-channel attacks with virtual machines must be
stressed, in which the attacker, from his virtual machine, attacks others that are running
on the same physical hardware. This allows them to access their resources by studying
the electromagnetic emanations, the processor cache, etc. This information can be
useful in choosing the most attractive targets to attack. This category also includes
attacks on shared memory systems: they work as a gateway to other types of attacks
such as malware or side-channel attacks, and consist in analyzing the shared memory
(cache or main memory) used by virtual and physical machines to obtain technical
information about the infrastructure, such as the processes that are running, the number
of users, or even the memory dump of virtual machines.
Authentication threats: the attacker tries to obtain information from the clients of dif-
ferent applications or trusted companies by posing as themselves. This is done through
malicious services with the same appearance as those are normally offered through a
link sent by email. Thus, the attacker can obtain sensitive information from his/her
victims by entering their data, such as passwords or bank cards. This way, the attacker
can illicitly host services in the cloud and access accounts of certain services.

Altogether, many of these attack vectors (from both traditional and future threats
in industrial systems) are implemented in advanced persistent threats (APTs). This
is a class of sophisticated attack perpetrated against a particular organization, where
attackers have significant experience and resources. Such attackers infiltrate victim
networks by taking advantage of a multitude of vulnerabilities (often unknown, i.e.
zero-day), and go unnoticed for a prolonged period of time [4, 5]. Stuxnet was the first
APT recognized by the industry in 2010 [23], but later many others have appeared,
such as Duqu, DragonFly, BlackEnergy, and ExPetr [24, 6].

As discussed in [3], the exploitation of many of these threats also occur during the
stages of an advanced persistent threat:

1. Recognition (R) of the victim network, so as to search for exploitable vulnera-
bilities to penetrate its defenses.
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2. Communication (C): the attacker sends exploits to the victim, either directly
(e.g., using spear phishing emails) or indirectly (e.g., compromising a third party
such as a provider). By doing this, the first intrusion within the network is per-
formed.

3. Tracking (T) of zero-day vulnerabilities that allow the attacker to execute (E)
remote actions by previously launching malware or installing backdoors (e.g., to
install a command and control).

4. Propagation (P) of the attack to other areas of the network (also called lateral
movements), infiltrating new devices, modifying their operations and collecting
sensitive information.

5. Information filtration (F): lastly, the information obtained is sent back to the
domain of the attacker.

A complete overview of the present and future threats faced by an Industrial System
is summarized in Table 1, where all of them are linked with the APT stages introduced
before. We can observe that most of these threats can be potentially leveraged for the
first intrusion and the subsequent execution of exploits. However, the initial informa-
tion gathering about points of entry and vulnerabilities is mainly performed by ana-
lyzing metadata emanated from servers to sensors, and also by social engineering. As
for the final exfiltration of information, it normally requires that the attacker has taken
over the device to send data such that it resembles normal network traffic, making any
detection attempts challenging.

Even though most of these are in general inherited by IoT and cloud technologies,
they also pose new hazards to be addressed. Firstly, because the technical constraints
that the new devices and communication protocols feature create new vulnerabilities
and attack vectors. Secondly, due to the impact they cause in the assets within the
organization, which comprise control and corporative resources as well as end-users
(e.g., clients or operators). Altogether, this makes it necessary to find new defense
solutions and tailor the current detection mechanisms, as discussed in the following.

3 Defense techniques
Due to the variety of attack vectors that an APT exposes, multiple security solutions
must be combined at different levels. In this sense, Intrusion Detection Systems (IDS)
pose the first line of defense, as they detect unauthorized access to the network or one
of its systems, monitoring its resources and the traffic generated in search of behaviors
that violate the security policy established in the production process.

There are many methods for performing intrusion detection. One possibility is the
signature-based IDS, which tries to find specific patterns in the frames transmitted by
the network. However it is precisely for that reason that it is impossible for them to
detect new types of attacks whose pattern is unknown [25].

Another possibility is the anomaly-based IDS, which compare the current state
of the system and its generated data with the normal behavior of the system, to iden-
tify deviations present when an intrusion occurs. However, in the context of control
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systems, restrictions such as the heterogeneity of the data collected in an industrial
environment, the noise present in the measurements, and the nature of the anomalies
(attacks vs. faults) must be taken into consideration.

For this reason, numerous detection techniques have been based on areas such as
statistics or artificial intelligence [26], each with a different level of adaptation depend-
ing on the scenario of the application to be protected [27]:
Data mining-based detection: based on the analysis of an enormous amount of infor-
mation in search of characteristics that enable distinguishing if the data is anomalous.
In this category we find: Classification techniques: creation of a mathematical model
that classifies data instances into two classes: “normal” or “anomalous”. This model is
trained with already classified example data. Clustering-based techniques: like the pre-
vious category, they seek to classify instances of data but in different groups or clusters,
according to their similarity. This is mathematically represented by the distance in the
space between the points associated with that information. Association rule learning-
based techniques: they process the data set to identify relationships between variables,
in order to predict the occurrence of anomalies based on the presence of certain data.
Statistical anomaly detection: in this approach, inference tests are applied to verify
whether a piece of data conforms or not to a given statistical model, in order to confirm
the existence of intrusions: Parametric and nonparametric-based methods: while the
former are those that assume the presence of a probability distribution that fits the input
data to estimate the associated parameters (which does not have to conform to reality),
the second tries to look for the underlying distribution. In general, both are accurate
and noise-tolerant models of missing data, which allow us to find confidence intervals
to probabilistically determine when an anomaly occurs. Time series analysis: they
predict the behavior of the system by representing the information it generates in the
form of a series of points measured at regular intervals of time. Although they are able
to detect slight disturbances in the short term, they are less accurate in predicting drastic
changes. Markov chains: they consist of mathematical representations to predict the
future behavior of the system according to its current state. For this purpose, state
machines are used with a probability associated with transitions. Its accuracy increases
when using complex multi-dimensional models. Information based techniques: they
involve the observation of the information generated (for example, the capture of the
traffic) and its intrinsic characteristics in search of irregularities associated with threats-
packages for denial of service, messages to cause attacks by buffer overflow, etc. They
are generally efficient systems tolerant to changes and redundancy in the information.
Spectral theory-based techniques: these techniques use approximations of the data
to other dimensional sub-spaces where the differences between the normal and the
anomalous values are evidenced. They are usually complex and are used to detect
stealth attacks, those which are specially designed to circumvent detection techniques.
Knowledge-based detection: in this case, the knowledge about specific attacks or
vulnerabilities is acquired progressively, ensuring a low rate of false positives, thereby
resulting in a system that is resistant to long-term threats. However, the security de-
pends on how often the knowledge base is updated, and the granularity with which
information about new threats is specified. Examples of these techniques include state
transition-based techniques, Petri nets or expert systems.
Machine learning-based detection: this type of technique bases the detection on the
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creation of a mathematical model that learns and improves its accuracy over time, as it
acquires information about the system to be protected. In this category we find tech-
niques of artificial intelligence whose foundations are also closely linked to statistics
and data mining: Artificial neural networks: they are inspired by the human brain and
are able to detect anomalies when dealing with a large data set with interdependen-
cies. It allows the data to be classified as normal or anomalous with great precision and
speed, although they need a long time to create the model, which prevents them from
being applied in real time systems. Bayesian networks: events are represented in a
probabilistic way through directed acyclic graphs where the nodes represent states and
the edges define the conditional dependencies between them. The purpose is to calcu-
late the probability of an intrusion from the data collected. Support vector machines:
this is a technique that classifies the data according to a hyperplane that separates both
classes (habitual and anomalous information). Since it works with a linear combina-
tion of points in space (given by the input data), its complexity is not high and its
quality of precision is acceptable. However, it does not behave accurately in presence
of similar data, for which there is no hyperplane that divides them correctly. Fuzzy
logic: rule-based structures are used to define a reasoning with inaccurately expressed
information, like humans do in everyday language (being able to differentiate when a
person is “tall” or “short” or something is “slightly cold”). Therefore it models the
behavior of complex systems without excessive accuracy (leading to speed and flexi-
bility), but obviously it means the accuracy of the anomaly detection is not high either.
Genetic algorithms: they simulate the phenomenon of natural selection to solve a com-
plex problem for which there is no clear solution. In the first phase, a set of individuals
of a population is randomly generated (representing the possible solutions to that prob-
lem). From there, numerous iterations are carried out where successive operations of
selection, replacement, mutation and crossing are applied to ultimately find an optimal
solution. Although it is moderately applicable to the detection of anomalies, it has been
shown that it is unable to detect unknown attacks.

On the other hand, there are also specification-based IDS [28]. The principle be-
hind them is similar to systems based on anomalies, in the sense that the current state of
the system is compared to an existing model. However, in this case the specifications
are defined by experts, which reduces the number of false positives to the extent that
they are defined in detail. State diagrams, finite automata, formal methods, etc. are
often used. They are often combined with signature-based and anomaly-based IDS.

One alternative to IDS solutions are precisely Intrusion Prevention Systems (IPS).
These systems have the ability to (i) detect an anomaly within the system and (ii) miti-
gate the effect of the threat. Cubix’s TippingPoint [29] is a clear example of IPS capable
of detecting traffic anomalies in VoIP infrastructures, routers and switches. Similarly,
Extreme networks IPS also ensures business continuity by monitoring the behavior and
state of the operating systems such as Windows [30]; and Corero Network Security of-
fers in-line intrusion detection and automated response by combining behavior-based
and signature-based analysis [31].

However, the inclusion of these systems within complex infrastructures of critical
nature is not always feasible. The automation of response actions implies that we need
to trust in the reliability and accuracy of such actions; yet, depending on the situation,
it is very probable that the actions may not be so suitable for a critical context [32].
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In addition, the false positive rates in the detection processes can also significantly
impact on the final response – and indirectly affect the performance of the critical
control systems [33]. These characteristics are widely reflected in the state of the art,
where there are multiple approaches and researches in the field and for general contexts
[34, 35], but not enough for critical contexts.

As specified in [36, 37], it is essential to provide customizable IPSs for critical
environments, or at least for those remote areas where no human operator with reactive
capacity is available – either remotely or on-site. This work will evidently involve
more research in the area, since it is essential to find the sequences of parameters and
actions that best suit a situation, searching the way to offer proactive measures that help
respond to incidents or threats before major disruptions may arise [36]. This protection
property was also referenced by the National Institute of Standards and Technology
(NIST) in [38].

Even though IDS (and IPS) represent a valid solution to address the first stages of
an APT, it becomes essential for security staff to introduce additional techniques and
procedures to guarantee a minimum impact on the infrastructure [5]. Some of them
can be summarized as follows:

• Advanced detection of malware: for instance, the execution of processes and
files from suspicious provenance in sandbox mode, or the on-line analysis of
malware, in a non-intrusive way.

• Data loss prevention: as the last line of defense, this software protects against
the breach of data by controlling the access and use of sensitive information.

• Whitelisting: since the intruder intends to connect to a external server to set up
a command and control service and ultimately filtrate some data, a countermea-
sure to prevent it consists in the use of access control policies for the inbound
and outbound connections (e.g., specifying the exclusive set of URLs that each
device can access).

• Trusted Computing: a secure environment is created by means of hardware mod-
ules that guarantee the integrity and reliability of the software that is installed and
used within the industrial system.

• Intelligence-Driven Defense: based on the knowledge provided by experts and
victims of APTs, a intelligence feedback loop is created to identify patterns of
intrusions and understand the adversaries’ techniques, in order to accurately de-
sign and implement proper countermeasures.

• Security Awareness Training: training and consciousness about the best secu-
rity practices becomes especially important to protect against APTs, since most
intrusions are performed with the use of social engineering techniques.

In order to give a more detailed vision of actual technologies that make use of these
and other mechanisms, a review of the state of the art of defense solutions in both the
industry and academia is given in the following.
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4 Industrial IDS Products

Defense Strategies Leading Companies

Zone-based
Advenica, ARGUS, BAE Systems, Bayshore, Checkpoint, Deep Secure, Distrix, Fortinet,

Fox-IT, Icon Labs, Intel, Moxa, Nexor, Paloalto Networks, Phoenix Contact,
Positive Technologies, Seclab, Sophos, Tofino Security, Towersec, Waterfall Security

Configuration-based Verve, PAS, Nextnine, DL2C, AlgoSec, Sigmaflow, Dragos Security,
Amenaza Tech. LTD, Positive Technologies

Signature-based Cisco, Cyberark, Cyberbit, Digital Bond, ECI, FireEye
Context-based AlertEnterprise, WurldTech (GE)

Honeypot-based Attivo Networks

Anomaly-based
Control-See, CritiFence, CyberX, Darktrace, HALO Digital, ICS2, Indegy, Leidos

Nation-E, Nozomi, PFP Cybersecurity, RadiFlow, SCADAfence, SecureNok,
Sentryo, SIGA, ThetaRay

Table 2: Leading companies in the market

At present, there are various commercial solutions whose goal is to provide protection
mechanisms that can deter the attacks caused by APT actors. Such protection mecha-
nisms not only include the detection mechanisms described in section 3, but also other
solutions such as enhancing user awareness, separating the industrial network into var-
ious protected zones, and analyzing the configuration of the system. Most of these
solutions are passive (i.e. do not affect the operation of the system), transparent (i.e.
almost invisible to the existing control systems), and easy to deploy.

Table 2 provides an enumeration of the leading companies in the market that pro-
vide such protection mechanisms. In addition, a short summary of the main solutions
available in the market as of Q2 2018 is provided in the next sections.

4.1 Zone separation
These products focus on facilitating the separation of the industrial network into dif-
ferent security zones, using traditional security solutions such as firewalls. The main
challenge here is the structure of industrial networks: due to their complexity, it is nec-
essary to consider the deployment of various zones, such as the enterprise systems (e.g.
ERP), the enterprise middleware (e.g. MOM, ESB), the industrial control systems and
the field device networks, and the different demilitarized zones.

Beyond the integration of traditional firewall solutions that focus on IT networks
and protocols, there are various companies that provide specific solutions designed for
industrial networks. One example is the FortiGate platform developed by FortiNet [39],
which has the capacity to analyze multiple industrial protocols (eg Bacnet, DLMS,
DNP3, EtherCAT, ICCP, IEC-60870.5.104, Modbus/TCP, OPC, Profinet) and indus-
trial devices (eg ABB, Rockwell, Schneider Electric, Siemens, or Yokogawa). It is also
important to note that, due to the manufacturing of extremely complex interconnected
systems such as smart cars, there are now specific firewalls that are designed to pro-
tect these products beyond the assembly line, such as the Harman Shield solution by
Harman [40].

On the other hand, there are several commercial products focused on controlling
and filtering the information exchanged between zones. Various platforms, such as
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Advenica ZoneGuard [41], provide a bridge between IT and OT networks that im-
plement various information exchange policies. Other solutions, such as Data Loss
Prevention [42] and Nexor Border Gateway [43], also allow the definition of policies
for certain network interactions, such as outbound connections and inbound email mes-
sages, respectively.

Besides, certain products implement the “data diode” communication approach,
which physically enforces a one-way flow of data. Some solutions, like Fox Data-
Diode [44], focus on the integration of these diodes between IT and OT zones. Other
solutions, like SecuriCDS Data Diode [41], also implement additional defense mecha-
nisms (e.g. dual power supplies) that avoid the creation of covert data channels. Finally,
there are some approaches, like Waterfall FLIP [45], that actually implement reversible
diodes, which can be activated by personnel on-site in case of emergencies.

4.2 Secure configuration
There are various products in the market whose goal is to provide a holistic view of the
configuration of the overall system. For example, platforms like the ICS Shield plat-
form developed by Nextnine [46] focus on providing a centralized operations center for
the management of various security aspects of the system. They include the automatic
discovery and classification of the system assets, the retrieval of hardware/software
state information and the management of changes in this state, the management of
passwords, the secure transfer of data, the management of software updates and back-
ups, the creation and application of security policies, and the preparation of security
reports, amongst others.

Other platforms focus on the analysis of the system configuration, so as to manage
and verify existing security policies. For example, the AlgoSec Security Management
Solution [47] not only proactively assess existing network security policies related to
firewalls and cloud access, but also is able to intelligently design policy changes and
implement them whenever necessary. Continuing with the subject of verification, cer-
tain tools, such as NERC Compliance by Sigmaflow [48], provide automated compli-
ance monitoring of existing security and reliability industrial standards. These tools
not only analyze the documentation of the company in search of discrepancies with ex-
isting standards, but also validate certain compliance data in real time, such as security
controls, local accounts, and logical access rights.

Finally, there are platforms whose goal is to analyze the configuration and the el-
ements of the system in search of vulnerabilities. Some vulnerability assessment sys-
tems, such as MaxPatrol, are specifically designed for industrial settings. Due to their
design, these tools can efficiently analyze the system without interrupting its regular
use, and are able to monitor even ERP systems such as SAP [49]. On the other hand,
there are some tools, such as SecurITree, that focus on the theoretical analysis of attack
models and attack trees [50]. These tools can create reports that predict the most likely
behaviour of attackers, and can help to identify risks that are otherwise undetected.
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4.3 Detection: Signature-based solutions
These products consist mainly of devices that passively connect to the control network,
accessing the information flow. One of the pioneers in this field is Cisco Systems,
which has a large database of attack signatures on industrial environments [51]. Such
attack signatures include not only generic attacks on elements of the industrial network
(e.g. denial of service in human-machine interfaces (HMIs), buffer overflows in PLCs),
but also specific vulnerabilities in industrial protocols (e.g. CIP Or Modbus). This
database is easily upgradeable, and can be integrated into all Cisco intrusion detection
systems.

There are also other products on the market that, beyond the detection of attack
signatures, provide several value-added services. An example of this is the monitoring
system of Cyberbit [52]. This system monitors the traffic of the network in order to
map existing devices, giving the operator a real-time view of the elements of a system.
In addition, it is possible to take advantage of information acquired from the device to
identify elements that have known vulnerabilities.

4.4 Detection: Context-based solutions
One drawback of most products based on the detection of attack signatures and patterns
is the lack of correlation between the detected events, which could provide valuable
information regarding the actual scope of the attack behind those events. Another
drawback is the absence of an in-depth analysis based on the context of the system:
the parameters of a command can be valid in a given context, but harmful in another.
As a consequence, there are several products that perform correlation and/or in-depth
analysis tasks which take into account the general context of the system.

One example of these correlation systems is the Sentry Cyber SCADA software
from AlertEnterprise [53]. It combines and correlates events and alerts from various
domains (physical, IT and OT networks) and sources, with the aim of providing a
complete security monitoring tool for industrial systems. To achieve this objective, this
tool allows integration with other security tools, such as vulnerability scanners, SIEM
(Security Information and Event Management) systems, IDS/IPS systems or security
configuration tools.

Finally, an example of in-depth analysis solutions is Wurldtech’s OPShield [54]
system. OPShield performs an in-depth analysis of the network traffic, including the
syntactic and grammatical structure of the protocols. Through these analyses, OP-
Shield can inspect the commands and parameters sent to the different components of
the industrial system, and even block those commands if the administrator has autho-
rized OPShield to do so. Note that the blocking or not of these commands is determined
based on the context in which they have been sent. Thus, it is possible to protect the
system against seemingly valid and/or legitimate commands that are potentially dan-
gerous for the correct operation of the system if they are sent outside the context for
which they were defined.
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4.5 Detection: Honeypot-based solutions
Existing solutions based on honeypot systems usually create a distributed system, through
which they collect and analyze information related to the threat or attack. Thanks to
the analysis and correlation of the collected information, this type of IDS / IPS systems
can be able to identify the type of attack launched, the (malicious) activities carried out
on the system, as well as the existence of infected devices.

Within the current marketplace, one of the major existing honeypot-based detec-
tion platforms is ThreatMatrix from Attica Networks, which is able to detect real-time
intrusions in public and private networks, ICS/SCADA systems, and even IoT environ-
ments. Its flagship product is called BOTsink [55], and is able to detect advanced
persistent threats (APTs) effectively, without being detected by the attackers. The
client also can customize the software images that simulate SCADA devices. Such
customization allows the integration of both the software and the protocols that are
used in the production environment. As a result, fake SCADA devices can be made
almost indistinguishable from real SCADA devices.

4.6 Detection: Anomaly-based solutions
As of Q2 2018, there are a wide range of products that make use of deep packet in-
spection and/or machine learning technologies to detect unusual behaviors or hidden
attacks, of which there is no already identified pattern. Such products are usually de-
ployed as rack servers, although many companies also provide virtualized solutions.
Regarding the deployment location of these commercial products, most of them oper-
ate on the operational network, accessing the information flow through the SPAN ports
of existing network devices. Other deployment strategies exist, though. Some prod-
ucts, such as UCME-OPC from Control-See [56], retrieve system information directly
from the industrial process management layers. Other products make use of agents that
are distributed throughout all the elements – devices and networks – of the industrial
system. Finally, there are products in charge of monitoring the interactions with field
devices, such as those offered by SIGA [57]; or even systems embedded within the
field devices themselves, such as those offered by MSi [58], which are responsible for
examining and validating the behavior of field devices.

As for the specific techniques of anomaly modeling and detection, each commer-
cial product makes use of one or several of them. Some products, such as UCME-OPC
from Control-See [56], create a model of the system based on certain conditions/rules.
Whenever those rules are not fulfilled by the system parameters and values, a warn-
ing will be launched. Other products, such as XSense from CyberX [59], base their
operation on the classification of system states: if a monitored system transitions to a
previously unknown state, such state is classified as normal or malicious depending on
multiple signals and indicators. There are also products, such as HALO Vision from
HALO Analytics [60], which make use of statistical analysis.

Other products consider industrial control systems from a holistic point of view,
and include the behavior of various actors, including human operators, into their own
detection systems. For example, Darktrace’s Enterprise Immune System [61] makes
use of a variety of mathematical engines, including Bayesian estimates, to generate
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behavioral models of people, devices, and even the business as a whole. There are also
other products, such as Wisdom ITI from Leidos [62], which offer a pro-active and
real-time platform for internal threat detection. This platform not only monitors system
activity indicators, but also the behavior of human employees. Another example of this
is the Privilege Account Security Solution by CyberArk [63], which monitors user
activity to detect not only anomalous activity caused by abuse of existing privileges,
but also potential symptoms of compromised credentials.

Finally, it is necessary to point out that the majority of these products start with no
knowledge about the environment or industrial system that they aim to protect. As such,
they need to be trained, acquiring the knowledge they need mostly by monitoring the
network traffic. Even so, there are some products, like the suites marketed by ICS2 [64]
or the products developed by ThetaRay [65], that can acquire such behavior offline. For
example, by loading and processing training files, or by retrieving information provided
by the manufacturer about the expected behaviour of the different system components.
The aim of this is to reduce the time required for the deployment and commissioning
of these products.

5 Academic Research

Coverage 2013 2014 2015 2016 2017 2018.Q1
Field devices 2 - 3 15 9 2

Control networks – PLCs 4 8 9 5 9 3
Control networks 1 3 3 9 17 4
Complete system - 1 - 5 2 2

Table 3: Evolution according to detection coverage

Protocol 2013 2014 2015 2016 2017 2018.Q1
Fieldbus protocols 2 1 2 3 2 1

Communication protocols 2 3 10 14 8 2
Control & management protocols 1 - 1 1 1 -

Table 4: Evolution according to protocol analyzed

Mechanism 2013 2014 2015 2016 2017 2018.Q1
Signature-based detection - 3 - 4 5 2
Data mining mechanisms 2 2 4 5 6 2

Statistical anomaly detection - - 4 5 3 1
Knowledge based detection 1 1 2 1 - 2

Machine learning based detection 3 3 2 8 9 3
Specification-based detection 1 3 2 8 10 1

Other mechanisms - - 3 5 5 1

Table 5: Evolution according to detection mechanism

As it is crucial to protect industrial control infrastructures against all kind of attacks,
including advanced persistent threats, the academia has paid special attention to the
development of intrusion detection systems for this particular context. In these systems,
all the defense mechanisms described in section 3 have been integrated to some extent,
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trying to cover all the elements of an industrial control network: field devices, the
interactions between the control network and field controllers such as PLCs, the control
network itself, and even the complete system in a holistic way.

Tables 3, 4 and 5 provide a classification by categories (according to detection
coverage, protocol analyzed, and detection mechanism, respectively) of the number of
articles published in the field between years 2013 and 2018 (first quarter). Within this
classification, we have included the most relevant articles that appeared in international
journals and/or conferences. This relevance has been measured by factors such as the
relevance of the corresponding journal or conference, and the number of references per
article.

5.1 Analysis: Detection Mechanisms
In recent years, all detection mechanisms described in section 3 have been taken into
account. We can observe in table 5 that research in the field has been growing over
time. We can also observe that the academia has been paying special attention to ma-
chine learning and specification-based mechanisms. One possible reason is that the
elements of the control networks can behave in a more or less predictable way [66]. As
such, these elements can be modeled through various set of rules. Still, the importance
of signature-based detection and statistical techniques is still high, as they are being
successfully applied in the analysis of the interactions between the corporate network
and the control network.

Still, there are certain detection strategies, which will be highlighted here, that are
still being studied only within the academia. For example, in the last years, several
authors have started analyzing parameters such as industrial telemetry and response
time. Mainly due to the behaviour of control networks, these parameters are providing
novel and exciting insights over the behaviour of such control systems. For example,
through indirect or direct analysis (e.g. via ICMP messages) of these parameters, it
is possible to detect variations in the traffic patterns that are indicative of ongoing
attacks [67], detect fake control devices [68], discover covert manipulations of the
controller device code [69], and even deduce the CPU load of PLCs [70]. There are also
researchers who have considered other less traditional parameters within the context of
anomaly and intrusion detection, such as the radio-frequency emissions emitted by the
control devices [71], or even their power consumption [72].

There are also other researchers that incorporate concepts such as the physical sim-
ulation of the monitored system [73]. This simulation allows not only to predict the ma-
licious intent of a command, but also to predict an imminent system failure. In addition,
within the context of specification-based research, there are a large number of papers
that seek to generate the system behavior rules in an automatic or semi-automatic way.
Various works, such as [74] [75], retrieve this information by analyzing the configura-
tion and system description files. Other works, such as [76], extract the system states
by analyzing the bursts of traffic that are exchanged between the control network and
the PLCs.

Besides, there are also other strategies whose goal is to identify and analyze the
most critical elements of a control network. An example of this is the system de-
veloped by Cheminod et al. [77], which can identify the sequence of vulnerabilities
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that could affect an existing system by (i) analyzing the elements of that system and
(ii) analyzing vulnerability databases such as CVE [78]. Other research lines provide
a support to the aforementioned IDS/IPS technologies from a theoretical perspective,
adopting a reactive policy by means of recovery mechanisms when topological changes
are detected. Their target is to ensure the structural controllability of the network and
achieve resilience [79], this is, the continuity of the industrial process and the connec-
tivity between nodes in presence of attacks [80]. For such goal, graph theory concepts
are leveraged. Finally, it should be mentioned that the vast majority of new signature-
based detection systems use, in addition to the SNORT tool, the BRO [81] tool and
the SURICATA [82] tool to perform their analyses. These new tools are used be-
cause they provide additional benefits. For example, the BRO tool provides a modular
and extensible framework that allows the generation and analysis of events through a
Turing-complete language.

5.2 Analysis: Detection Coverage
Regarding the evolution of the coverage of detection systems developed in the academia,
it is worth commenting that in 2016 the mechanisms in charge of protecting the field
devices increased exponentially, and is still a very active area of research as of 2018
Q1. The reason is simple: these mechanisms can detect attacks against the field de-
vices at the very moment they occur, making them a very useful last line of defense
against APTs that aim to manipulate the field devices. Direct monitoring is usually
done by extracting the data directly from the sensors and actuators, either through the
machine’s own interfaces [83] [84], or through a “capillary network” that monitors the
operation of the machinery through several types of external sensors [85]. On the other
hand, there are also mechanisms that integrate a hypervisor within the control devices
themselves (e.g. PLCs [86]). This hypervisor is then responsible for reviewing the
behavior of all control programs executed within the device, either through a set of
rules [87] or by modeling the different states of the program and checking for potential
deviations [88].

Moreover, starting from 2016, various researchers have designed novel theoretical
architectures whose objective is to protect all the elements of an industrial production
system in a holistic way. This is achieved by deploying various detection components,
both hardware and software, which obtain information and process it at a local level.
This information will then be sent to a central system, which can more efficiently de-
tect threats that affect several elements of the system in a covert way [89]. Although
there are various industrial solutions that already apply this approach, certain elements
of these academic architectures represent an evolution of the industrial correlation sys-
tems defined in section 4.4 in various ways. For example, some architectures allow
field devices to be fully monitored alongside all other elements of the control sys-
tem [85], while other architectures improve the detection of anomalies whose impact is
distributed to all elements of the system [90]. There are also architectures, such as [91],
that divide the overall system states into several logical partitions, in order to facilitate
the work of anomaly detection systems. Finally, some architectures deploy host agents
that are specifically designed to look for APT malware infections [92].
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5.3 Analysis: Protocols analyzed
Currently there are various scientific articles that have developed specific detection
mechanisms for communications protocols such as Modbus/TCP [93], Ethernet/IP [82]
and S7comm [94]. These works focus mostly on two strategies: i) defining and detect-
ing attack signatures, and ii) analyzing the behavior of these communication protocols
with the detection mechanisms described in section 3. However, there are very few
works that have studied the security of control & management protocols such as OPC
UA. These protocols are considered as one of the cornerstones of Industry 4.0 [95],
and there are already various commercial products that currently use these protocols
in production environments [96]. Yet the amount of research that has been done in
this area has been extremely limited, and only a few works exist [97]. It is extremely
important to analyze and protect these specific protocols in the near future.

Another important aspect related to the communication protocols is that many de-
tection mechanisms that analyze the integrity of fieldbus protocols are focused on the
analysis of wireless industrial IoT protocols such as WirelessHART [98]. This is
mainly because an attacker can more easily manipulate a wireless network if he has
the necessary information: he can not only inject information from anywhere within
the range of the network, but he can also deploy a malicious element in a covert way.
Finally, it is important to note that there have been multiple developments in the area
of anomaly detection systems for certain industry-specific protocols, such as CAN bus
(vehicular systems) and IEC 61850 (electrical substations).

6 Discussions

6.1 Intrusion detection and existing threats
In an industrial control ecosystem, and due to the diversity of devices and protocols,
there is no single ‘silver bullet’ that can address all potential threats described in sec-
tion 2. Yet it might be possible to combine various solutions to provide an adequate
level of protection against all kinds of attacks, including APTs. The state of the art
described in previous sections has shown that it is possible to detect threats against
the availability of the system by detecting malicious network traffic and by mapping
the behavior and location of existing devices. There are other detection mechanisms
that are specialized in the detection of integrity threats: either directly, by detecting the
presence of malicious entities, or indirectly, by uncovering the attacks and side effects
caused by such entities. Finally, various techniques, such as in-depth traffic analysis,
anomaly-based detection, and user monitoring can help in the detection of malicious
insiders that bypassed the AAA infrastructure.

However, although we have already developed the basic necessary tools to detect
and deter APTs, there are still some issues that need of further exploration. First, very
few research works have made use of the existing research on APT behaviour [6, 99]
to validate their detection mechanisms. Another issue is related to the hardening of
the industrial infrastructure, with the goal of reducing the attack surface. Some works
have considered this approach [100], yet more research is needed. Last but not least,
it is extremely important to facilitate the integration of holistic defense solutions in
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existing critical infrastructures, not only in terms of cost but also in terms of usability
(e.g. availability of tools to facilitate the traceability of potential APT intrusions) and
user training [101].

Besides, there are still certain aspects that require of more research and validation in
the area of intrusion detection and intrusion prevention for industrial ecosystems. For
example, any attack that aims to passively extract information from the system (i.e. data
exfiltration) can create anomalous traffic that might be flagged by anomaly detection
systems [102]. However, most industrial-oriented detection systems have been more
focused on detecting other kind of anomalous traffic, such as DoS attacks and malware
patterns. Another open issue is the identification of misconfigured services and other
proactive defense mechanisms, whose designs are limited due to the critical nature of
the monitored system. As mentioned in sections 4.2 and 3, there are some works in in
these areas, but more research is needed.

Moreover, other aspects related to the integration of technologies such as IIoT and
cloud computing must be carefully considered. Regarding IIoT threats, while there
are various detection systems that are specialized in analyzing IIoT protocols such
as WirelessHART, it is still necessary to expand this coverage to other potential IIoT
protocols such as CoAP, MQTT and oneM2M [103]. Besides, as IIoT attacks can be
extremely localized (i.e. attacks using the wireless channel), it is essential to assure
that all elements and evidence are properly monitored; making use, if possible, of
lightweight accountability mechanisms based on granular information in which it is
required to identify what, who and how these events were launched.

As for the threats that cloud computing faces, if the industrial system makes use of
an external cloud computing infrastructure, it is mandatory to integrate various attesta-
tion and accountability mechanisms in order to check that all outsourced processes are
being correctly managed. Even if the cloud infrastructure is local, it is still necessary to
monitor the cloud infrastructure itself in order to detect if the cloud resources are being
misused or not. On the other hand, these resources can also be used by constrained
devices and systems as a means of executing time-consuming complex detection algo-
rithms.

6.2 Intrusion detection and the industry of the future
Within the context of the so-called Industry 4.0, the integration of cutting-edge tech-
nologies within industrial environments is being planned. This will generate new sce-
narios and services such as flexible production lines or predictive maintenance sys-
tems [1]. However, such integration will bring new challenges that need to be un-
derstood and overcome when developing threat protection and detection mechanisms.
The nature of these challenges is in fact related to the specific features of Industry 4.0
environments [104]. Both are summarized as follows:

• Novel infrastructures. In the near future, most Industry 4.0 elements will be
interoperable with each other. As a result, those elements will become semi-
autonomous, able to make collaborative decisions that could improve various
businesses and industrial processes (e.g. automatic production line planning).
This will make necessary the development of new detection mechanisms, fo-
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cused on analyzing both the behavior of these semi-autonomous systems and
their interactions. Yet these interoperability mechanisms and principles can also
be used to improve the integration of all devices with existing correlation systems
and other holistic detection architectures.

• Retrofitting. By integrating Industry 4.0 services and components with existing
industrial infrastructures (e.g. extending the sensing capabilities of existing ma-
chinery through the use of “capillary networks”), it is possible to bring certain
benefits of the Industry 4.0 to legacy systems. However, the existence of these
parallel subsystems will increase the attack surface, as these new layers can be
attacked – or even be used as a platform to launch attacks.

• Industrial data space. The various organizations that will make up the industry
of the future will be part of a common space, in which producers, suppliers and
users will be able to share information. This implies the need to create safe
collaborative spaces in which to share safety information regarding anomalies
that may affect other members of the ecosystem. Yet this also implies that such
collaborative spaces can (and probably will) be used by internal and external
adversaries to launch attacks against all members.

• Cloud-based manufacturing. As mentioned in section 2.2.2, the cloud is be-
coming an integral part of the industrial ecosystem. In the industry 4.0, this
integration will go one step further, as cloud-based manufacturing will bring
dynamic deployment and configuration of industrial components on the cloud.
However, since the physical limits between the IT and OT networks will dis-
solve, this integration will bring various novel security issues beyond the existing
cloud security challenges.

• Agents. Within the vision of the Industry 4.0, it will be possible to deploy
agent-based systems: from workflow planners to self-organising assembly sys-
tems [105]. The existence of these agents in this ecosystem is a doubled-edged
sword. One the one hand, malicious agents can travel anywhere in the network
and manipulate any of its components, opening the door to novel APT attacks.
On the other hand, agents can also be used for good, analyzing the behaviour of
existing systems and providing support for the management of system failures.

• Other enhanced interactions. The integration of physical and virtual processes
within the industry will give birth to novel services such as the “digital twins”
(virtual representations of subsystems) and “digital workers” (interactions with
advanced human-machine interfaces). This opens up both new opportunities
(detection of anomalies through analysis of simulations) and challenges (control
of virtualized environments, targeted attacks against workers).

7 Conclusions
There have been significant progress in the development of intrusion detection tech-
niques for industrial ecosystems in the last years. Not only there are commercially
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available products that integrate advanced solutions such as honeypot systems and in-
formation correlation systems, but also there are novel detection mechanisms and ar-
chitectures developed in the academia. There are still various areas that need of further
research, such as the applicability and integration of proactive defense mechanisms,
the integration of defense mechanisms into IIoT and cloud computing deployments,
and the advent of the Industry 4.0. Moreover, regarding APTs, it is imperative to i)
incorporate the knowledge of existing APTs and APT stages into the validation of
defense mechanisms, and ii) facilitate the integrability and usability of these defense
mechanisms, so they can be easily included in more critical infrastructures.
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