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Abstract

For an effective protection of all the elements of an industrial ecosys-
tem against threats, it is necessary to understand the true scope of existing
mechanisms capable of detecting potential anomalies and intrusions. It is
the aim of this article to review the threats that affect existing and novel
elements of this ecosystem; and to analyze the state, evolution and appli-
cability of both academic and industrial intrusion detection mechanisms
in this field.
Keywords: SCADA, Industrial Control, Intrusion Detection, Industry
4.0.

1 Introduction

Control of industrial environments through systems such as SCADA (Supervi-
sory Control and Data Acquisition) is now present in most critical infrastruc-
tures (e.g. power grids, nuclear plants or transport systems). These control
systems allow remote and real-time access to devices that govern the produc-
tion cycle, whether they are controllers such as PLC (Field Programmable Logic
Controllers), or RTU (Remote Terminal Units). Traditionally, SCADA systems
and industrial networks had to be isolated from other environments. However,
at present, we are dealing with the interconnection of SCADA systems for the
storage of data or the outsourcing of services, as well as a standardization of the
software and hardware used in control systems. Consequently, there has been a
substantial increase in security risks [59] based on new specific threats operating
under different threat modes [10].

A solution to mitigate these effects is the provision of awareness-based ap-
proaches (e.g. situational-awareness [2]), which help to provide the necessary
tools to favor the detection and response to attacks and/or anomalies [59]. Many
of these anomalies arise from conflicts or security breaches due to interoperabil-
ity issues, probably caused by multiple communication and control protocols [3].
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For example, in the literature it is possible to find protocols working in Ethernet
and TCP/IP, such as Ethernet/IP, Ethernet POWERLINK, from fieldbus pro-
tocols (eg HART, wirelessHART, etherCAP, IO-Link) CANopen, PROFINET,
Modbus / TCP or HART / IP. In addition to these, there are others designed for
the management and control of all industrial equipment, such as the CIP, OPC
UA, and MTConnect protocols, without forgetting existing, open source alter-
natives such as Woopsa or REST-PCA. This complexity is further compounded
by new communication infrastructures (e.g. IoT or cloud computing) along with
their specific digitization services for managing multiple types of data, as well
as the integration of new resources and services within the so-called Industry
4.0 [31]. As a result, a system can become complex and critical, besieged by
multiple threats.

For these reasons, this paper explores the existing techniques and mecha-
nisms that try to detect specific threat vectors within an industrial context,
without losing sight of the future industrial paradigm that has started to be
applied gradually. This is organized as follows: Section 2 highlights the threats
to which the control is exposed today. Taking into account this landscape,
Section 3 addresses the search, by the industry and academia, for defense tech-
niques suitable for intrusion detection systems in these critical environments,
as explained in Sections 4 and 5, respectively. Finally, Section 6 discusses the
application of these mechanisms in practice, and the conclusions drawn are pre-
sented in Section 7.

2 Cybersecurity threats

2.1 Traditional Threats in IS and ICS

The threat model that can be applied to the elements of traditional industrial
control elements (PLCs, industrial communication protocols, IT elements) is
highly diverse [18][26]. For the purposes of our analysis, the attack vectors
that affect these elements can be classified following the taxonomy given by
the IETF standard-7416 [54], in which the threats are grouped according to
the attack goals against the minimum security services [1] such as availability,
integrity, confidentiality and authentication.
Availability threats: apart from the typical subtraction of devices (e.g. PLC
and RTU) or communication infrastructures, it is essential to highlight the
threats related to (distributed) denial of services ((D)DoS) attacks, the tech-
niques of which mainly focus on the routing (e.g. relay attacks, selective for-
warding, grey hole, black hole or botnets).
Integrity threats: includes from the typical sabotage of the industrial equip-
ment to the injection of malware [42] to slow down the operational performance,
obtain sensitive information, modify the operation of the devices, etc. These
threats are also related to the alteration of the industrial communication pro-
tocols and/or the real traffic values produced by field devices, controllers or
corporate network equipment. Impersonation of nodes and spoofing are also be
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applicable to an industrial context, due in part to the susceptibility to Man-in-
the-Middle attacks and the existing weaknesses of the industrial communication
protocols.
Confidentiality threats: within this category the illicit disclose techniques
through passive traffic analysis (regarding topologies and routes) and theft
of sensitive data (related to industrial process, customers, administration) or
configurations should be highlighted. An example of information theft is that
achieved by injecting code in the operational applications (often webs through
cross-site scripting (XSS) or SQL Injection) so as to obtain or corrupt the control
measurements/actions, the company and/or end-users privacy, or the security
credentials.
Authentication/authorization threats: the authentication in this point in-
cludes those attackers that generally try to escalate privileges by taking advan-
tage of a design flaw or vulnerability in the software in order to gain unautho-
rized access to protected resources. In order to carry out these attacks, attackers
need to apply specific social engineering techniques (e.g. phishing attacks, chain
of spam letters) to collect strategic information from the system. Apart from
this, the easy mobility of in-plant operators and their interactions through the
use of hand-held interfaces (smart-phones, tablets, laptops) also lead to nu-
merous security problems, probably caused by mis-configurations or unsuitable
access control, both at the logical (use of simple passwords) and physical (access
to equipment) level.

The exploitation of many of these threats may also arise in some of the states
of an advanced persistent threat as discussed in [51, 12]: (i) recognition (R) and
communication (C) through social engineering or compromising a third party
such as a provider; (ii) tracking (T) of zero-day vulnerabilities and execution (E)
of remote actions by previously launching malware and installing backdoors; and
(iv) propagation (P) and information filtration (F). Stuxnet was the first APT
recognized by the industry in 2010 [33], but later others appeared such as DuQu,
Dragon Night, Flame, Aurora, Shamoon or the Mask [8].

2.2 Present and future landscape of threats in IS and ICS

Besides addressing the aforementioned security issues, it is necessary to en-
vision a set of future security threats that might appear, especially pertinent
when integrating new trending technologies such as IoT or Cloud computing
infrastructures.

2.2.1 Industrial Internet of Things threats

IoT interconnects sensors and all kinds of devices with Internet networks, to
gather information about physical measures, location, images, etc. The Indus-
trial IoT (IIoT) specifically pursues a vertical integration among all the com-
ponents that belong to the industrial architecture, ranging from machines to
operators or the product itself. With respect to security, the situation is further
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complicated when we take into consideration the scarce autonomy and compu-
tational resources that these devices have. Continuing with the IETF standard
7416 [54], we can distinguish the following range of threats:
Availability threats: comprises the disruption of communication and process-
ing resources: firstly, against the routing protocol [56], influencing its mode of
operation (creating loops, modifying routes, generating errors, modifying mes-
sage delays, etc.) through different attacks, which can be directly committed
at the physical level through jamming or interferences. Secondly, against the
equipment itself, including the exhaustion of resources (processing, memory or
battery) exploitation of vulnerabilities in the software (as well as reverse en-
gineering) that govern control devices such as PLCs, in addition to running
malicious code or malware: viruses, Trojans, etc. [46]. Thirdly, we have to
stress the data traffic disruption, undermining the functionality of the routers
in the network, causing a lack of availability of certain services. It is caused by
vectors such as selective forwarding, wormhole or sinkhole attacks.
Integrity threats: it means the manipulation of routing information to influ-
ence the traffic and fragment the network, like a Sybil attack [60]. This becomes
the gateway to other attacks such as black hole or denial of service, causing the
routes to pass through the more congested nodes. The form of attack includes
falsification of information (the node advertises anomalous routes), routing in-
formation replay, physical compromise of the device or attacks on the DNS
protocol [35]. Node identity misappropriation can also be taken into account,
opening the door to other attacks that result in the modification of data of all
types.
Confidentiality threats: includes the exposure of information of multiple
kinds: firstly, the one related the state of the nodes and their resources (avail-
able memory, battery, etc.). One way is the so-called side channel attacks [61],
where the electromagnetic emanations of devices leak information about the ex-
ecution of certain operations. Secondly, it also includes the exposure of routing
information and the topology, which constitutes rich information for the attack-
ers as it enables them to identify vulnerable equipment. Since this information
resides locally in the devices, attacks against the confidentiality of this infor-
mation will be directed at the device, either physically compromising it or via
remote access. Lastly, it is also possible to have the exposure of private data,
usually collected by wearable devices belonging to operators within the organi-
zation, which can reveal information about their performance at work or their
location. One attack vector could be the use of social engineering or phishing.
Authentication threats: we can highlight the impersonation and introduc-
tion of dummy/fake nodes, capable of executing code or injecting illegitimate
traffic to potentially control large areas of the network or perform eavesdrop-
ping. An attack vector consists of the forwarding of digital certificates used in
authentication protocols or physical or network address spoofing. Escalation of
privileges can also be faced as a consequence of a non-existent or poor access
control, when the attacker can take advantage of design flaws or vulnerabilities
in IoT devices to access protected resources without authorization.
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2.2.2 Cloud Computing threats

In recent years cloud computing has changed the way in which information
technology (IT) is managed, through an environment that provides on-demand
resources over the Internet with a low cost of investment and easy deployment.
For our work, cloud computing acquires dual importance. On the one hand,
many organizations use the cloud to provide IoT services, acquiring sensor data
and sending commands to actuators. On the other hand, it is also necessary to
take into account the delegation of certain analysis and production processes to
the cloud, in what is known as cloud-based manufacturing [57]. The ultimate
goal of this model is to enable customers to design, configure and manufacture
a product through a shared network of suppliers throughout its life cycle, en-
hancing the efficiency and reducing costs. In summary, these factors make it
necessary to analyse the full range of threats that cloud computing faces [48][53]:
Availability threats: This category includes the so-called service theft attack,
which takes advantage of the vulnerabilities and inaccuracies that exist in the
scheduler component of some hypervisors, where the service is charged consider-
ing the time spent running virtual machines – instead of based on the CPU time
in use. This can be exploited by attackers in order to use services at the expense
of other clients, making sure that the processes of interest are not executed at
each tick of the scheduler. We also contemplate denial of service attacks: the
attacker causes the service to become inaccessible for its legitimate users. This
is the most serious type of attack on cloud computing, because of the ease with
which it can be carried out and the difficulties in preventing them.
Integrity threats: the most important one comes with a malware injection
attack, where the attacker replicates the service instance that is provided to
a client (a virtual machine, for example) and replaces it with a manipulated
one that is hosted again in the cloud. This means that requests sent by the
legitimate user are processed in the malicious service, and the attacker can
access the exchanged data. To do this, the most common way is to appropriate
access privileges or introduce malware into multiple format files, jeopardizing
the confidentiality and privacy of the data.
Confidentiality threats: firstly, side-channel attacks with virtual machines
must be stressed, in which the attacker, from his virtual machine, attacks others
that are running on the same physical hardware. This allows them to access
their resources by studying the electromagnetic emanations, the processor cache,
etc. This information can be useful in choosing the most attractive targets to
attack. This category also includes attacks on shared memory systems: they
work as a gateway to other types of attacks such as malware or side-channel
attacks, and consist in analyzing the shared memory (cache or main memory)
used by virtual and physical machines to obtain technical information about the
infrastructure, such as the processes that are running, the number of users, or
even the memory dump of virtual machines.
Authentication threats: the attacker tries to obtain information from the
clients of different applications or trusted companies by posing as themselves.
This is done through malicious services with the same appearance as those
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are normally offered through a link sent by email. Thus, the attacker can
obtain sensitive information from his/her victims by entering their data, such
as passwords or bank cards. This way, the attacker can illicitly host services in
the cloud and access accounts of certain services.

A complete overview of the present and future threats faced by an Indus-
trial System is summarized in Table 1. Even though most of these are in general
inherited by IoT and cloud technologies, they also pose new hazards to be ad-
dressed. Firstly, because the technical constraints that the new devices and
communication protocols feature create new vulnerabilities and attack vectors.
Secondly, due to the impact they cause in the assets within the organization,
which comprise control and corporative resources as well as end-users (e.g.,
clients or operators). Altogether, this makes it necessary to find new defense
solutions and tailor the current detection mechanisms, as discussed in the fol-
lowing.

3 Defense techniques

Intrusion Detection Systems (IDS) are a first defense solution to the wide range
of cybersecurity threats described in section 2. The objective is to detect unau-
thorized access to the network or one of its systems, monitoring its resources
and the traffic generated in search of behaviors that violate the security policy
established in the production process.

There are many methods for performing intrusion detection. One possibility
is the signature-based IDS, which tries to find specific patterns in the frames
transmitted by the network. However it is precisely for that reason that it is
impossible for them to detect new types of attacks whose pattern is unknown
[43].

Another possibility is the anomaly-based IDS, which compare the cur-
rent state of the system and its generated data with the normal behavior of
the system, to identify deviations present when an intrusion occurs. However,
in the context of control systems, restrictions such as the heterogeneity of the
data collected in an industrial environment, the noise present in the measure-
ments, and the nature of the anomalies (attacks vs. faults) must be taken into
consideration.

For this reason, numerous detection techniques have been based on areas
such as statistics or artificial intelligence [7], each with a different level of adap-
tation depending on the scenario of the application to be protected [22]:
Data mining-based detection: based on the analysis of an enormous amount
of information in search of characteristics that enable distinguishing if the data
is anomalous. In this category we find: Classification techniques: creation of
a mathematical model that classifies data instances into two classes: “normal”
or “anomalous”. This model is trained with already classified example data.
Clustering-based techniques: like the previous category, they seek to classify in-
stances of data but in different groups or clusters, according to their similarity.
This is mathematically represented by the distance in the space between the
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points associated with that information. Association rule learning-based tech-
niques: they process the data set to identify relationships between variables, in
order to predict the occurrence of anomalies based on the presence of certain
data.
Statistical anomaly detection: in this approach, inference tests are applied
to verify whether a piece of data conforms or not to a given statistical model,
in order to confirm the existence of intrusions: Parametric and nonparametric-
based methods: while the former are those that assume the presence of a proba-
bility distribution that fits the input data to estimate the associated parameters
(which does not have to conform to reality), the second tries to look for the un-
derlying distribution. In general, both are accurate and noise-tolerant models
of missing data, which allow us to find confidence intervals to probabilistically
determine when an anomaly occurs. Time series analysis: they predict the
behavior of the system by representing the information it generates in the form
of a series of points measured at regular intervals of time. Although they are
able to detect slight disturbances in the short term, they are less accurate in
predicting drastic changes. Markov chains: they consist of mathematical repre-
sentations to predict the future behavior of the system according to its current
state. For this purpose, state machines are used with a probability associated
with transitions. Its accuracy increases when using complex multi-dimensional
models. Information based techniques: they involve the observation of the in-
formation generated (for example, the capture of the traffic) and its intrinsic
characteristics in search of irregularities associated with threats- packages for
denial of service, messages to cause attacks by buffer overflow, etc. They are
generally efficient systems tolerant to changes and redundancy in the informa-
tion. Spectral theory-based techniques: these techniques use approximations of
the data to other dimensional sub-spaces where the differences between the nor-
mal and the anomalous values are evidenced. They are usually complex and are
used to detect stealth attacks, those which are specially designed to circumvent
detection techniques.
Knowledge-based detection: in this case, the knowledge about specific at-
tacks or vulnerabilities is acquired progressively, ensuring a low rate of false
positives, thereby resulting in a system that is resistant to long-term threats.
However, the security depends on how often the knowledge base is updated, and
the granularity with which information about new threats is specified. Exam-
ples of these techniques include state transition-based techniques, Petri nets or
expert systems.
Machine learning-based detection: this type of technique bases the de-
tection on the creation of a mathematical model that learns and improves its
accuracy over time, as it acquires information about the system to be protected.
In this category we find techniques of artificial intelligence whose foundations
are also closely linked to statistics and data mining: Artificial neural networks:
they are inspired by the human brain and are able to detect anomalies when
dealing with a large data set with interdependencies. It allows the data to be
classified as normal or anomalous with great precision and speed, although they
need a long time to create the model, which prevents them from being applied
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in real time systems. Bayesian networks: events are represented in a proba-
bilistic way through directed acyclic graphs where the nodes represent states
and the edges define the conditional dependencies between them. The purpose
is to calculate the probability of an intrusion from the data collected. Support
vector machines: this is a technique that classifies the data according to a hyper-
plane that separates both classes (habitual and anomalous information). Since
it works with a linear combination of points in space (given by the input data),
its complexity is not high and its quality of precision is acceptable. However,
it does not behave accurately in presence of similar data, for which there is no
hyperplane that divides them correctly. Fuzzy logic: rule-based structures are
used to define a reasoning with inaccurately expressed information, like humans
do in everyday language (being able to differentiate when a person is “tall” or
“short” or something is “slightly cold”). Therefore it models the behavior of
complex systems without excessive accuracy (leading to speed and flexibility),
but obviously it means the accuracy of the anomaly detection is not high either.
Genetic algorithms: they simulate the phenomenon of natural selection to solve
a complex problem for which there is no clear solution. In the first phase, a set
of individuals of a population is randomly generated (representing the possible
solutions to that problem). From there, numerous iterations are carried out
where successive operations of selection, replacement, mutation and crossing
are applied to ultimately find an optimal solution. Although it is moderately
applicable to the detection of anomalies, it has been shown that it is unable to
detect unknown attacks.

On the other hand, there are also specification-based IDS [47]. The
principle behind them is similar to systems based on anomalies, in the sense
that the current state of the system is compared to an existing model. However,
in this case the specifications are defined by experts, which reduces the number
of false positives to the extent that they are defined in detail. State diagrams,
finite automata, formal methods, etc. are often used. They are often combined
with signature-based and anomaly-based IDS.

4 Industrial IDS Products

Detection Strategies Leading Companies

Signature-based
Cisco, Cyberark, Cyberbit

Digital Bond, ECI, FireEye
Context-based AlertEnterprise, WurldTech (GE)

Honeypot-based Attivo Networks

Anomaly-based

Control-See, CritiFence, CyberX, Darktrace
HALO Analytics, HeSec, ICS2, Indegy, Leidos

Nation-E, Nozomi, PFP Cybersecurity, RadiFlow
SCADAfence, SecureNok, Sentryo, SIGA, ThetaRay

Table 2: Leading companies in the market

At present, there are several types of IDS systems available on the market. They
correspond to the strategies described in section 3: from more traditional signa-
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ture detection systems to more novel anomaly detection systems and “honeypot”
systems. Most of these solutions are passive (i.e. do not affect the operation of
the system), transparent (i.e. almost invisible to the existing control systems),
and easy to deploy.

Table 2 provides an enumeration of the leading companies in the market that
provide IDS services and appliances. In addition, a short summary of the main
solutions available in the market as of Q1 2017 is provided in the next sections.

4.1 Signature-based solutions

These products consist mainly of devices that passively connect to the control
network, accessing the information flow. One of the pioneers in this field is
Cisco Systems, which has a large database of attack signatures on industrial
environments [13]. Such attack signatures include not only generic attacks on
elements of the industrial network (e.g. denial of service in HMIs, buffer over-
flows in PLCs), but also specific vulnerabilities in industrial protocols (e.g. CIP
Or Modbus). This database is easily upgradeable, and can be integrated into
all Cisco intrusion detection systems.

There are also other products on the market that, beyond the detection of
attack signatures, provide several value-added services. An example of this is
the monitoring system of Cyberbit [15]. This system monitors the traffic of
the network in order to map existing devices, giving the operator a real-time
view of the elements of a system. In addition, it is possible to take advantage
of information acquired from the device to identify elements that have known
vulnerabilities.

4.2 Context-based solutions

One drawback of most products based on the detection of attack signatures
and patterns is the lack of correlation between the detected events, which could
provide valuable information regarding the actual scope of the attack behind
those events. Another drawback is the absence of an in-depth analysis based on
the context of the system: the parameters of a command can be valid in a given
context, but harmful in another. As a consequence, there are several products
that perform correlation and/or in-depth analysis tasks which take into account
the general context of the system.

One example of these correlation systems is the Sentry Cyber SCADA soft-
ware from AlertEnterprise [4]. It combines and correlates events and alerts
from various domains (physical, IT and OT networks) and sources, with the
aim of providing a complete security monitoring tool for industrial systems. To
achieve this objective, this tool allows integration with other security tools, such
as vulnerability scanners, SIEM (Security Information and Event Management)
systems, IDS/IPS systems or security configuration tools.

Another example of in-depth analysis solutions is Wurldtech’s OPShield [58]
system. OPShield performs an in-depth analysis of the network traffic, includ-
ing the syntactic and grammatical structure of the protocols. Through these
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analyses, OPShield can inspect the commands and parameters sent to the differ-
ent components of the industrial system, and even block those commands if the
administrator has authorized OPShield to do so. Note that the blocking or not
of these commands is determined based on the context in which they have been
sent. Thus, it is possible to protect the system against seemingly valid and/or
legitimate commands that are potentially dangerous for the correct operation
of the system if they are sent outside the context for which they were defined.

4.3 Honeypot-based solutions

Existing solutions based on honeypot systems usually create a distributed sys-
tem, through which they collect and analyze information related to the threat or
attack. Thanks to the analysis and correlation of the collected information, this
type of IDS / IPS systems can be able to identify the type of attack launched,
the (malicious) activities carried out on the system, as well as the existence of
infected devices.

Within the current marketplace, one of the major existing honeypot-based
detection platforms is ThreatMatrix from Attica Networks, which is able to
detect real-time intrusions in public and private networks, ICS/SCADA systems,
and even IoT environments. Its flagship product is called BOTsink [5], and
is able to detect advanced persistent threats (APTs) effectively, without being
detected by the attackers. The client also can customize the software images that
simulate SCADA devices. Such customization allows the integration of both the
software and the protocols that are used in the production environment. As a
result, fake SCADA devices can be made almost indistinguishable from real
SCADA devices.

4.4 Anomaly-based solutions

As of Q1 2017, there are a wide range of products that make use of deep packet
inspection and/or machine learning technologies to detect unusual behaviors or
hidden attacks, of which there is no already identified pattern. Regarding the
deployment location of these commercial products, most of them operate on the
operational network, accessing the information flow through the SPAN ports
of existing network devices. Other deployment strategies exist, though. Some
products, such as UCME-OPC from Control-See [14], retrieve system informa-
tion directly from the industrial process management layers. Other products,
such as the Smart Agent services by HeSec [25], make use of agents that are
distributed throughout all the elements – devices and networks – of the indus-
trial system. Finally, there are products in charge of monitoring the interactions
with field devices, such as those offered by SIGA [50]; or even systems embedded
within the field devices themselves, such as those offered by MSi [40], which are
responsible for examining and validating the behavior of field devices.

As for the specific techniques of anomaly modeling and detection, each com-
mercial product makes use of one or several of them. Some products, such
as UCME-OPC from Control-See [14], create a model of the system based on
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certain conditions/rules. Whenever those rules are not fulfilled by the system
parameters and values, a warning will be launched. Other products, such as
XSense from CyberX [16], base their operation on the classification of system
states: if a monitored system transitions to a previously unknown state, such
state is classified as normal or malicious depending on multiple signals and
indicators. There are also products, such as HALO Vision from HALO Analyt-
ics [24], which make use of statistical analysis.

Other products consider industrial control systems from a holistic point of
view, and include the behavior of various actors, including human operators,
into their own detection systems. For example, Darktrace’s Enterprise Immune
System [17] makes use of a variety of mathematical engines, including Bayesian
estimates, to generate behavioral models of people, devices, and even the busi-
ness as a whole. There are also other products, such as Wisdom ITI from
Leidos [34], which offer a pro-active and real-time platform for internal threat
detection. This platform not only monitors system activity indicators, but also
the behavior of human employees.

Finally, it is necessary to point out that the majority of these products start
with no knowledge about the environment or industrial system that they aim to
protect. As such, they need to be trained, acquiring the knowledge they need
mostly by monitoring the network traffic. Even so, there are some products,
like the suites marketed by ICS2 [27], that can acquire such behavior offline by
loading and processing a file. The aim of this is to reduce the time required for
the deployment and commissioning of these products.

5 Academic Research

Coverage 2013 2014 2015 2016
Field devices 2 - 3 15

Control networks – PLCs 4 8 9 5
Control networks 1 3 3 9
Complete system - 1 - 5

Table 3: Evolution according to detection coverage

Protocol 2013 2014 2015 2016
Fieldbus protocols 2 1 2 3

Communication protocols 2 3 10 14
Control & management protocols 1 - 1 1

Table 4: Evolution according to protocol analyzed

Due to the importance of protecting industrial control infrastructures before,
during and after an attack, the academia has also been paying special attention
to the development of intrusion detection systems for this particular context.
In these systems, all the defense mechanisms described in section 3 have been
integrated to some extent, trying to cover all the elements of an industrial

12



Mechanism 2013 2014 2015 2016
Signature-based detection - 3 - 4
Data mining mechanisms 2 2 4 5

Statistical anomaly detection - - 4 5
Knowledge based detection 1 1 2 1

Machine learning based detection 3 3 2 8
Specification-based detection 1 3 2 8

Other mechanisms - - 3 5

Table 5: Evolution according to detection mechanism

control network: field devices, the interactions between the control network and
field controllers such as PLCs, the control network itself, and even the complete
system in a holistic way.

Tables 3, 4 and 5 provide a classification by categories (according to detec-
tion coverage, protocol analyzed, and detection mechanism, respectively) of the
number of articles published in the field between years 2013 and 2016. Within
this classification, we have included the most relevant articles that appeared in
international journals and/or conferences. This relevance has been measured
by factors such as the relevance of the corresponding journal or conference, and
the number of references per article. Due to space constraints, this section will
only provide citations to those articles that are explicitly mentioned.

5.1 Analysis: Detection Mechanisms

In recent years, all detection mechanisms described in section 3 have been taken
into account. We can observe in table 5 that research in the field has been
growing over time. We can also observe that the academia has paid special
attention to machine learning and specification-based mechanisms. One possible
reason is that the elements of the control networks can behave in a more or less
predictable way [32]. As such, these elements can be modeled through various
set of rules. It should also be mentioned that signature-based detection and
statistical techniques are becoming increasingly important – and successfully
applied – in the interactions between the corporate network and the control
network.

Still, there are certain detection strategies, which will be highlighted here,
that are still being studied only within the academia. For example, several
authors are using parameters that have not previously been taken into account
in this context, such as network telemetry. Through indirect or direct analysis
(e.g. via ICMP messages) of the telemetry, it is possible to detect fake control
devices [44], and even discover covert manipulations of the controller device
code [38]. There are also researchers who have considered other less traditional
parameters within the context of anomaly and intrusion detection, such as the
radio-frequency emissions emitted by the control devices [52].

There are also other researchers that incorporate concepts such as the phys-
ical simulation of the monitored system [39]. This simulation allows not only to
predict the malicious intent of a command, but also to predict an imminent sys-
tem failure. In addition, within the context of specification-based research, there
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are a large number of papers that seek to generate the system behavior rules
in an automatic or semi-automatic way, mainly by analyzing the configuration
and system description files [9].

Besides, there are also other strategies whose goal is to identify and analyze
the most critical elements of a control network. An example of this is the system
developed by Cheminod et al. [11], which can identify the sequence of vulner-
abilities that could affect an existing system by (i) analyzing the elements of
that system and (ii) analyzing vulnerability databases such as CVE [41]. Other
research lines provide a support to the aforementioned IDS/IPS technologies
from a theoretical perspective, adopting a reactive policy by means of recovery
mechanisms when topological changes are detected. Their target is to ensure
the structural controllability of the network and achieve resilience [36], this is,
the continuity of the industrial process and the connectivity between nodes in
presence of attacks [45]. For such goal, graph theory concepts are leveraged.
Finally, it should be mentioned that the vast majority of new signature-based
detection systems use, in addition to the SNORT tool, the BRO [55] tool to
perform their analyses. This tool provides a modular and extensible framework
that allows the generation and analysis of events through a Turing-complete
language.

5.2 Analysis: Detection Coverage

Regarding the evolution of the coverage of detection systems developed in the
academia, it is worth commenting that in 2016 the mechanisms in charge of
protecting the field devices have increased exponentially. The reason is simple:
these mechanisms can detect attacks against the field devices at the very moment
they occur. Direct monitoring is usually done by extracting the data directly
from the sensors and actuators, either through the machine’s own interfaces [30],
or through a “capillary network” that monitors the operation of the machinery
through several types of external sensors [28]. On the other hand, there are also
mechanisms that integrate a hypervisor within the control devices themselves
(e.g. PLCs [19]). This hypervisor is then responsible for reviewing the behavior
of all control programs executed within the device.

Moreover, in 2016 various researchers have designed novel theoretical archi-
tectures whose objective is to protect all the elements of an industrial production
system in a holistic way. This is achieved by deploying various detection com-
ponents, both hardware and software, which obtain information and process it
at a local level. This information will then be sent to a central system, which
can more efficiently detect threats that affect several elements of the system
in a covert way. These architectures represent an evolution of the industrial
correlation systems defined in section 4.2 in various ways. For example, certain
architectures allow field devices to be fully monitored alongside all other ele-
ments of the control system [28], while other architectures improve the detection
of anomalies whose impact is distributed to all elements of the system [20].
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5.3 Analysis: Protocols analyzed

Currently there are a large number of scientific articles that have developed spe-
cific detection mechanisms for communications protocols such as Modbus/TCP [21].
These works focus mostly on two strategies: i) defining and detecting attack sig-
natures, and ii) analyzing the behavior of these communication protocols with
the detection mechanisms described in section 3. However, there are very few
works that have studied the security of control & management protocols such
as OPC UA. It is extremely important to analyze and protect these specific
protocols in the near future: not only they are considered as one of the corner-
stones of Industry 4.0 [23], but there are already various commercial products
that currently use these protocols in production environments [49].

Finally, it should be mentioned that the vast majority of detection mecha-
nisms that analyze the integrity of fieldbus protocols are focused on the analysis
of wireless industrial IoT protocols such as WirelessHART [6]. This is mainly
because an attacker can more easily manipulate a wireless network if he has
the necessary information: he can not only inject information from anywhere
within the range of the network, but he can also deploy a malicious element in
a covert way.

6 Discussions

6.1 Intrusion detection and existing threats

In an industrial control ecosystem, and due to the diversity of devices and pro-
tocols, there is no single ‘silver bullet’ that can address all potential threats
described in section 2. Yet it might be possible to combine various solutions to
provide an adequate level of protection. The state of the art described in previ-
ous sections has shown that it is possible to detect threats against the availability
of the system by detecting malicious network traffic and by mapping the behav-
ior and location of existing devices. There are other detection mechanisms that
are specialized in the detection of integrity threats: either directly, by detecting
the presence of malicious entities, or indirectly, by uncovering the attacks and
side effects caused by such entities. Finally, various techniques, such as in-depth
traffic analysis, anomaly-based detection, and user monitoring can help in the
detection of malicious insiders that bypassed the AAA infrastructure.

There are still certain aspects that require of more research and validation.
For example, any attack that aims to passively extract information from the sys-
tem (i.e. data exfiltration) can create anomalous traffic that might be flagged
by anomaly detection systems [37]. However, most industrial-oriented detection
systems have been more focused on detecting other kind of anomalous traffic,
such as DoS attacks and malware patterns. Another open issue is the identifi-
cation of misconfigured services and other proactive defense mechanisms, whose
designs are limited due to the critical nature of the monitored system.

Moreover, other aspects related to the integration of technologies such as
IIoT and cloud computing must be carefully considered. Regarding IIoT threats,

15



while there are various detection systems that are specialized in analyzing IIoT
protocols such as WirelessHART, it is still necessary to expand this coverage
to other potential IIoT protocols such as CoAP, MQTT and oneM2M [29]. Be-
sides, as IIoT attacks can be extremely localized (i.e. attacks using the wireless
channel), it is essential to assure that all elements and evidence are properly
monitored; making use, if possible, of lightweight accountability mechanisms
based on granular information in which it is required to identify what, who and
how these events were launched.

As for the threats that cloud computing faces, if the industrial system makes
use of an external cloud computing infrastructure, it is mandatory to integrate
various attestation and accountability mechanisms in order to check that all
outsourced processes are being correctly managed. Even if the cloud infrastruc-
ture is local, it is still necessary to monitor the cloud infrastructure itself in
order to detect if the cloud resources are being misused or not. On the other
hand, these resources can also be used by constrained devices and systems as a
means of executing time-consuming complex detection algorithms.

6.2 Intrusion detection and the industry of the future

Within the context of the so-called Industry 4.0, the integration of cutting-
edge technologies within industrial environments is being planned. This will
generate new scenarios and services such as flexible production lines or predictive
maintenance systems [31]. However, such integration will bring new challenges
that need to be understood and overcome when developing threat protection and
detection mechanisms. One of these aspects, already mentioned in section 5.3, is
the detection of those anomalies that will affect control & management protocols
such as OPC-UA. Another aspect to consider is the integration of physical
and virtual processes within the industry, giving birth to novel services such
as the “digital twins”. This opens up both new opportunities (detection of
anomalies through analysis of simulations) and challenges (control of virtualized
environments).

Another aspect to consider is the assumption that, in the near future, most
Industry 4.0 elements will be interoperable with each other. As a result, those
elements will become semi-autonomous, able to make collaborative decisions
that could improve various businesses and industrial processes (e.g. automatic
production line planning). This will make necessary the development of new
detection mechanisms, focused on analyzing both the behavior of these semi-
autonomous systems and their interactions. Yet these interoperability mecha-
nisms and principles can also be used to improve the integration of all devices
with existing correlation systems and other holistic detection architectures. Fi-
nally, the various organizations that will make up the industry of the future will
be part of a common space, in which producers, suppliers and users will be able
to share information. This implies the need to create safe collaborative spaces
in which to share safety information regarding anomalies that may affect other
members of the ecosystem.
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7 Conclusions

There have been significant progress in the development of intrusion detection
techniques for industrial ecosystems in the last years. Not only there are com-
mercially available products that integrate advanced solutions such as honeypot
systems and information correlation systems, but also there are novel detection
mechanisms and architectures developed in the academia. Even so, it is nec-
essary to move forward in various aspects in order to completely cover the full
spectrum of potential threats, such as the integration of mechanisms oriented to
protect IIoT and cloud infrastructures, the deployment of novel research mech-
anisms in real scenarios, the analysis of certain command & control protocols,
and various challenges related to the industry of the future.
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