
Using Temporal Logics of Knowledge in the
Formal Verification of Security Protocols

Clare Dixon, Mari-Carmen Fernández Gago, Michael Fisher and Wiebe van der Hoek
Department of Computer Science

The University of Liverpool, Liverpool L69 7ZF, UKfclare,mcarmen,michael,wiebeg@csc.liv.ac.uk
Abstract

Temporal logics of knowledge are useful for reasoning
about situations where the knowledge of an agent or compo-
nent is important, and where change in this knowledge may
occur over time. Here we use temporal logics of knowledge
to reason about security protocols. We show how to spec-
ify part of the Needham-Schroeder protocol using tempo-
ral logics of knowledge and prove various properties using
a clausal resolution calculus for this logic.

1. Introduction

Improved communication infrastructures encourage par-
ties to interchange more and more sensitive data, such as
payment instructions in e-commerce, strategic information
between commercial partners, or personal information in,
for instance, medical applications. Issues such as authenti-
cation of the partners in a protocol, together with the con-
fidentiality of information, therefore become increasingly
important. Consequently, cryptographic protocols are com-
monly used to distribute keys and authenticate agents and
data over hostile networks. Although the protocols used of-
ten appear watertight, many examples are known of sensi-
tive applications that were ‘cracked’ and had to be furnished
with new, ‘improved’, protocols. It is obvious that in such
information-sensitive applications as above, one prefersto
formally prove that certain information can not be eaves-
dropped by unwanted third parties.

The application of logical tools to the analysis of secu-
rity protocols was pioneered by Burrows, Abadi and Need-
ham. In [1] and [7] specific epistemic logics, collectively
referred to as BAN logics, were proposed to deal with au-
thentication issues. We propose an approach using a combi-
nation of temporal and epistemic logics.

By combining both temporal and epistemic logics, we
provide a logical framework in which systems requiring
both dynamic aspects and informational aspects relating to

knowledge can be described. This is particularly important
in security protocols, where one wants to ensure that certain
knowledge is obtained over time or, at least, that ignorance
of potential intruders persists over the whole run of the pro-
tocol. These logics have the advantages of a well-defined
semantics, an existing body of theoretical work relating to,
for example, axiomatisations and complexity, see for exam-
ple [9], and sound and complete proof methods for exam-
ple [2].

In this paper, we bring together specification using tem-
poral logics of knowledge and verification using clausal
resolution, and apply these to the problem of formally
analysing security protocols. In order to show how such pro-
tocols can be specified and verified, we consider one very
well known protocol, namely the Needham-Schroeder pro-
tocol [12]. This protocol has been widely studied with par-
ticular problems uncovered via formal analysis, for exam-
ple [11]. Our aim is to demonstrate the suitability ofKL(n),
with its resolution method, for security and authentication,
rather than bringing new insights to the Needham Schroeder
protocol.

Note that, due to lack of space, we will neither give a full
description of the resolution calculus, nor full details ofthe
Needham-Schroeder proofs. These details can be found in a
companion technical report [4].

2. The Needham-Schroeder Protocol (NSP)

The Needham-Schroeder protocol (NSP) with public
keys [12] intends to establish authentication between an
agentA who initiates the protocol and an agentB who re-
sponds toA. The complete protocol consists of seven mes-
sages, but we here focus on a simplified version consist-
ing of only three messages. The messages that we omit are
those whereby the agents request other agent’s public keys
from a server. The protocol can then be described as the fol-

C. Dixon, C. Fernandez-Gago, M. Fisher, and W. van der Hoek, “Using Temporal Logics of Knowledge in the Formal Verification of Security
Protocols”, 11th International Symposium on Temporal Representation and Reasoning (TIME04), pp. 148-151, 2004.
http://doi.org/http://doi.ieeecomputersociety.org/10.1109/TIME.2004.1314432
NICS Lab. Publications: https://www.nics.uma.es/publications



lowing steps:

Message Direction Contents
Message 1 A! B : fNA;Agpub key(B)
Message 2 B! A : fNB;NAgpub key(A)
Message 3 A! B : fNBgpub key(B)

Here X ! Y denotes that agentX sends agentY a mes-
sage. Message contents of the formfX;Ygpub key(Z) repre-
sent messages containing bothX andY but then encrypted
with Z’s public key. Elements of the formNX are special
items of data, callednonces. Typically, agents in the proto-
col will generate their own unique nonce (often encrypted)
which is initially unknown to all other agents.

3. Temporal Logic of Knowledge

The logic,KL(n), atemporal logic of knowledge is the fu-
sion of propositional linear-time temporal logic with multi-
modal S5. The temporal component is interpreted over a
discrete linear model of time with finite past and infinite
future and the each modal relation is an equivalence class.
This logic has been studied in detail [9] and is the most com-
monly used temporal logic of knowledge. We use the usual
set of operators includingg(next), } (sometime or even-
tually), (always), Ki for knowledge and allow an opera-
tor start to denote the initial moment in time. For details of
the syntax and semantics ofKL(n) see for example [2].

To prove properties of our specification we use a reso-
lution calculus forKL(n). Due to lack of space we omit the
details of the proof method but refer the interested reader to
[2, 3].

4. Specifying the NSP inKL(n)
In this section, we will useKL(n) to specify the NSP. In

particular, we will provide axioms describing the key as-
pects of both the system and the protocol. In order to do this
we use the following syntactic conventions. LetM1 andM2

be variables over messages,Key be a variable over keys and
X;Y; : : : be variables over agents. Moreover, for every agent,
X, we assume there are keyspub key(X) andpriv key(X),
while in this protocolA and B are constants representing
two specific agents and we introduce an agentC to repre-
sent a potential intruder. We identify the following predi-
cates:� send(X;Msg;Key) (respectivelyrcv(X;Msg;Key)) is

satisfied if agentX sends (respectively receives) mes-
sageMsg encrypted byKey;� Msg(M1) is satisfied ifM1 is a message;� val pub key(X;V) (respectivelyval priv key(X;V)) is
satisfied if the value of the public (respectively private)
key ofX is V

� val nonce(NX;V) is satisfied if the value of nonceNX

is V;� contains(M1;M2) is satisfied if the messageM2 is con-
tained withinM1.

To simplify the description, we allow quantification and
equality over finite sets of agents, messages and keys; thus,
this logic remains essentially propositional.

Specifying Structural Assumptions We begin with var-
ious structural assumptions concerning keys and message
contents. These are given in Figure 1.

1. 8X;Key;M1: send(X;M1;Key) ):contains(M1;priv key(X))
— agents will not reveal their private key to others

2. 8X;V1;V2;V3:[val pub key(X;V1), val pub key(X;V1)] ^[val priv key(X;V2), val priv key(X;V2)] ^[val nonce(X;V3), val nonce(X;V3)]
— the public keys, private keys and nonces of all

the agents remain the same during the protocol

3. 8X;Y;V: (val pub key(X;V)^ val pub key(Y;V))) X = Y)
— no two agents have the same public keys

4. 8Key;M1:(send(A;M1;Key)^ [contains(M1;NA)_contains(M1;NB)])) (Key = pub key(B))
— if agentA sends out messages containingNA or

NB they must be encrypted withB’s public key.

5. 8Key;M2: (send(B;M2;Key)^ [contains(M2;NA)_contains(M2;NB)])) (Key = pub key(A))
— if agentB sends out messages containingNA or

NB they must be encrypted withA’s public key.

Figure 1. Specifying Structural Assumptions.

Specifying Scenario AssumptionsIn Figure 2 we instan-
tiate message contents, keys and names for this particular
scenario.

Specifying Basic Knowledge AxiomsIn Figure 3 we
specify the attributes of an agent’s knowledge.

Specifying Communication Axioms We now spec-
ify communication between agents, and how this affects the
agent’s knowledge. For convenience, we use past-time tem-
poral operators, in particular “ccdeefgg”, meaning in the previ-
ous moment in time, and “}� ”, meaning at some time in the
past. These operators have the usual semantics (see for ex-
ample [4]). This is shown in Figure 4.



14. 8X;M1;N1
g((Msg(M1)^ contains(M1;N1))) (9V1KXval nonce(N1;V1) ,ccdeefgg[KXval nonce(N1;V1) _ (9Y:9V: rcv(X;M1;pub key(Y))^KXval priv key(Y;V))]))

— for all moments except the first moment ifM1 is a message which containsN1 an agent knows the
content ofN1 either if it already knew the content ofN1, or if it received an encrypted version ofM1 that it
could decode.

15. 8X;Key;M1: rcv(X;M1;Key) ) 9Y: }� send(Y;M1;Key)
— if an agent receives a message, then there was some agent that previously sent that message

16. 8X;Key;M1;N1 (send(X;M1;Key)^ contains(M1;N1) ) 9V1: KXval nonce(N1;V1)_}� rcv(X;M1;Key)
— if an agent sends a messageM1 encrypted withKey, then it must either know the contentsM1 or just

be forwarding the encrypted message as a whole

Figure 4. Specifying Communication Axioms.

6. 8M1

Msg(M1), ((M1 = m1)_ (M1 = m2)_ (M1 = m3))
— in this particular scenario, we just use three

messages,m1,m2 andm3. Other (dummy) messages
can be added to make this axiom more realistic.

7. 8X;Y;Z:(contains(m1;X), ((X = A)_ (X = NA)))^(contains(m2;Y), ((Y = NA)_ (Y = NB)))^(contains(m3;Z), (Z = NB))
— messagem1 contains onlyNA andA, message

m2 contains onlyNB andNA and messagem3

contains onlyNB

8. start )
val priv key(A;av)^ val priv key(B;bv)^
val priv key(C;cv)^ val pub key(A;a)^
val pub key(B;b)^ val pub key(C;c))^
val nonce(NA;an)^ val nonce(NB;bn)^
val nonce(NC;cn)

— the initial values of public and private keys
and nonces (we also have negated statements eg
start ):val priv key(A;bv) etc).

Figure 2. Specifying Scenario Assumptions.

5. Verifying Properties of the Specification

Once we have the above axioms relating to the specific
scenario, we can attempt to prove various statements. Proof
is by clausal resolution. For more details see [4].

B’s Knowledge on Receipt ofNA The first example will
capture the statement “once B receives the nonce of A en-
coded by B’s public key then B knows the nonce of A”. This
can be translated intoKL(n) as(rcv(B;m1;pub key(B))) gKBval nonce(NA;an))
C’s Ignorance A key part of this protocol is that informa-
tion is transferred between agentsA andB without agentC

9. start )8X:(9V: KXval nonce(NX;V))^[8Y;Z: (Y 6= X)):KY val nonce(NX;Z)]
— initially agents only know their own nonces.

10. 8X;Y: (9V:KXval priv key(Y;V), (X = Y))
— agents only know their own private keys

11. 8X: KXval pub key(A;a)^KXval pub key(B;b)^KXval pub key(C;c)
— all agents know all the public keys.

12. 8X;N;V: KXval nonce(N;V) ) gKXval nonce(N;V)
— agents never forget nonces they know

13. 8X;Y;V: KXval priv key(Y;V) )gKXval priv key(Y;V)
— agents never forget private keys they know

Figure 3. Specifying Knowledge Axioms.

ever being able to intercept sensitive information. We can
verify this by showing that, in the scenario above,C will
never know the value ofA’s nonce, i.e.8V: :KCval nonce(NA;V)
Confirmation of B’s Knowledge Once A receivesm2

(which, in turn, containsNA) back, then it can infer thatB
knows the value ofNA, i.e.

rcv(A;m2;pub key(A))) gKAKBval nonce(NA;an)
6. Related Work and Conclusions

BAN logics such [1] and [7] analyse security protocols
by reasoning about the beliefs of principals. In our approach
we use a well studied non-classical logic, i.e. the temporal
logic of knowledge to specify and verify protocols. We ini-
tially choose to reason about knowledge rather than belief
as the epistemic logic of knowledge (S5) is stronger than
that of belief (KD45) requiring the axiomKl ) l i.e. if an



agent knowsl thenl is true. We could also easily incorpo-
rate beliefs to capture situations when a principal believed
items that may not be true.

Further, we use temporal operators to capture tempo-
ral information, relating to the order of events for example
sending and receiving messages, that is not explicitly stated
in BAN logics. In [14], an extension of BAN, time is incor-
porated in by allowing the past time temporal operatorsal-
ways in the past and its dualsometime in the past to impose
some order on events. We allow a much richer temporal lan-
guage. BAN logics implicitly assume that beliefs cannot de-
crease over time. Here we must explicitly state what knowl-
edge persists.

In an approach similar to ours, in [6] a simple branching
time logic allowing limited combinations of temporal oper-
ators is combined with modal logics of knowledge and per-
mission/obligation to specify security protocols. However
no proof method is provided for the resulting logic.

In [8] the authors use Lamport’s Raw Temporal Logic of
Actions (RTLA) [10] to specify and verify security proto-
cols. In RTLA an action is a statement about pairs of states.
Axioms, for example relating to sending and receiving mes-
sages, are written with respect to the relevant changes in
state. The language allows connectives from classical logic
as well as the temporal connectives and} and other
constructs.

Another approach that does use theorem proving, though
not particularly related to our approach, is presented in [5].
This paper shows how to introduce time into the Commu-
nicating Sequential Processes (CSP) protocol verification
framework of [13]. Then CSP is embedded in the PVS (Pro-
totype Verification System).

In this paper, we have shown how temporal logics of
knowledge are useful for specifying complex aspects of se-
curity protocols. One of the advantages of using a standard
combination of temporal and modal logics is that there is
a clear semantics for this logic. This was a problem with
the early BAN logics. Secondly there is an existing bank of
work relating to axiomatisations, complexity, proof meth-
ods etc that can be applied. In combination with clausal
resolution techniques we have developed, this allows us to
carry out verification of properties of security protocols.
While there has been work on verification of such proto-
cols before, the clarity of the logic, together with the flexi-
bility of the proof technique, makes this work important. In
the future, we will consider adding first-order aspects to the
logic, thus allowing the verification of infinite state proto-
cols.

Acknowledgements This work was partially supported by
EPSRC research grant GR/R45376/01.

References

[1] M. Burrows, M. Abadi, and R. Needham. A Logic for Au-
thentication. InProceedings of the Royal Society of London,
volume 426, pages 233–271, 1989.

[2] C. Dixon and M. Fisher. Resolution-Based Proof for Multi-
Modal Temporal Logics of Knowledge. In S. Goodwin and
A. Trudel, editors,Proceedings of TIME-00 the Seventh In-
ternational Workshop on Temporal Representation and Rea-
soning, Cape Breton, Nova Scotia, Canada, July 2000. IEEE
Press.

[3] C. Dixon, M. Fisher, and M. Wooldridge. Resolution for
Temporal Logics of Knowledge.Journal of Logic and Com-
putation, 8(3):345–372, 1998.

[4] C. Dixon, M.-C. F. Gago, M. M. Fisher, and W. van der Hoek.
Using temporal logics of knowledge in the formal verifica-
tion of security protocols. Technical Report ULCS-03-022,
University of Liverpool, Department of Computer Science,
2003. http://www.csc.liv.ac.uk/research/
techreports.

[5] N. Evans and S. Schneider. Analysing time dependent secu-
rity properties in CSP using PVS. InESORICS, pages 222–
237, 2000.

[6] J. Glasgow, G. MacEwen, and P.Panangaden. A Logic to
Reason About Security.ACM Transactions on Computer
Systems, 10(3):226–264, August 1992.

[7] L. Gong, R. Needham, and R. Yahalom. Reasoning about
Belief in Cryptographic Protocols. InProceedings of the
IEEE Computer Societey Symposium on Research in Secu-
rity and Privacy, pages 234–248. IEEE Computer Society
Press, 1990.

[8] J. W. Gray and J. McLean. Using Temporal Logic to Spec-
ify and Verify Cryptographic Protocols.Computer Security
Foundations Workshop, 12:108–116, 1995.

[9] J. Y. Halpern and M. Y. Vardi. The Complexity of Reason-
ing about Knowledge and Time. I Lower Bounds.Journal of
Computer and System Sciences, 38:195–237, 1989.

[10] L. Lamport. The Temporal Logic of Actions. Technical
Report Research Report 79, DEC Systems Research Center,
Palo Alto, CA, 1991.

[11] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-key Protocol Using csp and fdr. In T. Margaria and
B. Steffen, editors,Tools and Algorithms for the Construc-
tion and Analysis of Systems: second international work-
shop, TACAS ‘96, volume 1055 ofLecture Notes in Com-
puter Science, pages 147–166. Spinger, 1996.

[12] R. Needham and M. Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers.Communica-
tions of the ACM, 21:993–999, 1978.

[13] S. Schneider. Verifying authentication protocols with CSP.
In PCSFW: Proceedings of The 10th Computer Security
Foundations Workshop. IEEE Computer Society Press, 1997.

[14] P. Syverson. Adding Time to a Logic of Authentication. In
Proceedings of the First ACM Conference on Computer and
Communications Security, pages 97–101. ACM Press, 1993.


