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Abstrat. Clausal temporal resolution is haraterised by a translation

of the formulae whose satis�ability is to be established to a normal form,

step resolution (similar to lassial resolution) on formulae ourring at

the same states and temporal resolution between formulae desribing

properties over a longer period. The most omplex part of the method

ours in searhing for andidates for the temporal resolution operation,

something that may need to be arried out several times.

In this paper we onsider a new tehnique for �nding the andidates for

the temporal resolution operation. Although related to the previously

developed external searh proedure, this new approah not only allows

the temporal resolution operation to be arried out at any moment,

but also simpli�es any subsequent searh required for similar temporal

formulae.

Finally, in ontrast with previous approahes, this searh an be seen

as an inherent part of the resolution proess, rather than an external

proedure that is only alled in ertain situations.

1 Introdution

The e�etive mehanisation of temporal logi is vital to the appliation of tem-

poral reasoning in many �elds, for example the veri�ation of reative systems

[12℄, the implementation of temporal query languages [4℄, and temporal logi

programming [1℄. Consequently, a range of proof methods have been developed,

implemented and applied. The development of proof methods for temporal logi

has followed three main approahes: tableau [16℄, automates [14℄ and resolution

[2, 3, 10, 15℄, the approah adopted here. Resolution based methods have the ad-

vantage that, as in the lassial ase [13℄, a range of strategies an be used.

A partiularly suessful strategy for lassial resolution has been the set

of support strategy [17℄, whih restrits the appliation of the resolution rule,

pruning the searh spae. Our aim is to develop a set of support (SOS) strategy

for propositional temporal logi, PTL, the logi used in this paper. The exten-

sion of the SOS strategy for the fragment of PTL without eventualities (lauses

involving the operator `}', meaning sometime in the future) has been ahieved

?

This work was partially supported by EPSRC grant GR/M44859.

C. Fernandez-Gago, M. Fisher, and C. Dixon , Algorithms for Guiding Clausal Temporal Resolution , 25th Con-
ference on Artificial Intelligence (KI’02) , LNAI , 2479 , 235-249 , Aachen, Germany , 2002

C. Fernandez-Gago, M. Fisher, and C. Dixon, “Algorithms for Guiding Clausal Temporal Resolution”, 25th Conference on Artificial Intelligence
(KI02), LNAI vol. 2479, pp. 235-249, 2002.
NICS Lab. Publications: https://www.nics.uma.es/publications



[7℄ using tehniques developed from SOS for lassial logi. The de�nition of the

strategy for full PTL is non trivial and we intend to ahieve it using the algo-

rithms proposed in this paper together with the strategy de�ned for the ase

without eventualities.

Clausal temporal resolution [10℄ is haraterised by the translation to a nor-

mal form, the appliation of lassial style resolution between formulae that our

at the same moment in time (step resolution), together with a novel temporal

resolution rule, whih derives ontraditions over temporal sequenes. Although

the lausal temporal resolution method has been de�ned, proved orret and

implemented, it sometimes generates an unneessarily large set of formulas that

may be irrelevant to the refutation. Not only that, but temporal resolution op-

erations our only after many step resolution inferenes have been arried out.

This means that, in ases where a large amount of step resolution an our, the

method may be very expensive.

As the searh for the andidates for the temporal resolution operation is

the most expensive part of the method we need to guide it and, if possible,

avoid muh unneessary subsequent step resolution. In this sense, we propose

an algorithm based on step resolution to guide the searh. In this approah, we

hoose a andidate formula for the temporal resolution operation and we hek

whether suh a andidate is appropriated to perform the resolution operation.

Our intention is to re-use as muh information as possible in those ases where

further searhes are required. Thus, we propose a seond algorithm whih is

based on the original one and is used to guide further searhes. The struture

of the paper is as follows. In Setion 2 we de�ne the temporal logi onsidered,

namely Propositional Temporal Logi [11℄. In Setion 3 we review the basi

resolution method. In Setion 4 we desribe an algorithm to �nd andidates for

the temporal resolution operation using only step resolution. Its ompleteness is

shown in Setion 5. In Setion 6 we propose a seond algorithm algorithm for

the ases when further searhes are needed. Completeness is also shown in this

setion.

2 Syntax and Semantis of PTL

In this setion we present the syntax and semantis of (PTL), based on a dis-

rete, linear temporal logi with �nite past and in�nite future. The future-time

onnetives that we use inlude `}' (sometime in the future), `

g

' (in the next

moment in time), ` ' (always) `U ' (until), and `W ' (unless, or weak until) .

A hoie for interpreting suh temporal onnetives is (IN; <), i.e., the Natural

Numbers ordered by the usual `less than' relation.

2.1 Syntax

PTL formulae are onstruted using the following onnetives and proposition

symbols.

{ A set, P , of propositional symbols.



{ Nullary onnetives: true and false.

{ Propositional onnetives: :, _, ^, ) and ,.

{ Temporal onnetives:

g

, }, , U , and W and the nullary temporal

onnetive start.

The set of well-formed formulae of PTL

1

, denoted by WFF

p

, is de�ned as the

set satisfying:

{ Any element of P is in WFF

p

.

{ true, false and start are in WFF

p

.

{ If � and  are in WFF

p

then so are :�, � _  , � ^  , � )  , � ,  , }�,

�, �U  , �W ,

g

�

2.2 Semantis

We de�ne a model, M , for PTL as a struture hD, R, �

p

i where

{ D is the temporal domain, e.g, the natural numbers and

{ R is the ordering relation, e.g. <.

{ �

p

: D�P ! fT; Fg is a funtion assigning T or F to eah atomi proposition

at eah moment in time.

As usual we de�ne the semantis of the language via the satisfation relation `j='.

For PTL, this relation holds between pairs of the form hM;ui (M is a model and

u 2 IN) and well-formed formulae. The rules de�ning the satisfation relation

are as follows.

hM;ui j= p i� �

p

(u; p) = T (where p 2 P)

hM;ui j= true

hM;ui 6j= false

hM;ui j= start i� u = 0

hM;ui j= � ^  i� hM;ui j= � and hM;ui j=  

hM;ui j= � _  i� hM;ui j= � or hM;ui j=  

hM;ui j= �)  i� hM;ui 6j= � or hM;ui j=  

hM;ui j= :� i� hM;ui 6j= �

hM;ui j= �,  i� hM;ui j= �)  and hM;ui j=  ) �

hM;ui j=

g

� i� hM;u+ 1i j= �

hM;ui j=}� i� there exists a k 2 IN suh that k � u hM;ki j= �

hM;ui j= � i� for all j 2 IN, if j � u then hM; ji j= �

hM;ui j= �U  i� there exists a k 2 IN, s.t. k � u and hM;ki j=  and

for all j 2 IN, if u � j < k then hM; ji j= �

hM;ui j= �W i� hM;ui j= �U  or hM;ui j= �

1

As usual, parentheses are also allowed to avoid ambiguity



3 Clausal Resolution Method for PTL

The resolution method presented here is lausal, that means that to assure the

validity of some PTL formula we negate it and translate into a normal form.

Then, both step resolution and temporal resolution are applied. We terminate

when either a ontradition has been derived or no new information an be

derived.

3.1 Separated Normal Form

The resolution method depends on formulae being transformed into a normal

form (SNF). The normal form, whih is presented in [9℄, omprises formulae that

are impliations with present-time formulae on the left-hand side and (present or)

future-time formulae on the right-hand-side. The transformation of formulae into

SNF depends on three main operations: the renaming of omplex subformulae;

the removal of temporal operators; and lassial style rewrite operations. In this

setion we review SNF but do not onsider the transformation proedure (we

note that the transformation to SNF preserves satis�ability [10℄).

Formulae in SNF are of the general form

V

i

(�

i

)  

i

), where eah �

i

)  

i

is known as a lause and is one of the following forms

start)

_



l



(an initial lause)

^

a

k

a

)

g

_

d

l

d

(a step lause)

^

b

k

b

)}l (a sometime lause)

where eah k

a

, k

b

, l



, l

d

and l represent literals.

To apply the temporal resolution operation desribed below, one or more step

lauses may need to be ombined. Then a variant on SNF alled merged-SNF

(SNF

m

)[8℄ is also de�ned. Given a set of lauses in SNF, any lause in SNF is

also a lause in SNF

m

. Any two lauses in SNF

m

may be ombined to produe

a lause in SNF

m

as follows.

�

1

)

g

 

1

�

2

)

g

 

2

(�

1

^ �

2

))

g

( 

1

^ �

2

)

3.2 Resolution Operations

Step resolution onsists of the appliation of the standard lassial resolution

rule in two di�erent ontexts. Pairs of initial or step lauses may be resolved as

follows:

start)  

1

_ l

start)  

2

_ :l

start)  

1

_  

2

�

1

)

g

( 

1

_ l)

�

2

)

g

( 

2

_ :l)

(�

1

^ �

2

))

g

( 

1

_  

2

)



The simpli�ation operations are similar to those used in the lassial ase, on-

sisting of both simpli�ation and subsumption. An additional operation is re-

quired when a temporal ontradition is produed:

�)

g

false

start) :�

true)

g

:�

This means that, if a formula � leads to a ontradition in the next moment,

then � must never be satis�ed.

Temporal resolution operations resolve one sometime lause with a set of merged

step lauses [10℄ as follows:

�

1

)

g

 

1

.

.

.

.

.

.

.

.

.

�

n

)

g

 

n

� ) }:l

�) (:

n

_

i=1

�

i

)W:l

with the side ondition that for all i, 1 � i � n, then j=  

i

) l and j=  

i

)

n

_

j=1

�

j

, from whih we an derive

n

^

i=1

(�

i

)

g

(l ^

n

_

j=1

�

j

)). This side ondition

ensures that the set of �

i

)

g

 

i

merged lauses together imply

n

_

i=1

�

i

)

g

l.

Suh a set of lauses is known as a loop in l. The resolvent produed inludes

an W operator that must be translated into SNF before any further resolution

steps an be applied.

Termination. If start) false is produed, the original formula is unsatis�able

and the resolution proess terminates.

Corretness. The soundness and (refutation) ompleteness of the original tem-

poral resolution method have been both established in [10℄.

4 Algorithm for Searhing for Loops

In order to apply the resolution rule presented in Setion 3 a loop must be

deteted. Thus, given an eventuality }:l, our aim is to detet a set of merged

step lauses that omprises a loop to be resolved with }:l.



4.1 Motivation

In [5℄ a breadth-searh approah is used to detet loops. Although this algorithm

is orret, in some ases, when further searhes for loops need to be arried out,

the information obtained in a previous searh is not reused. Our approah here

is based on step resolution and allows us to re-use previous searh information.

Assume we are searhing for a loop in l, our searh produes a sequene of

guesses, G

i

, whih are DNF formulae. We show that these are equivalent to

the DNF formulae H

i

output by the Breadth-First Searh algorithm (see [5℄). In

Breadth-First Searh eah new DNF formula H

i+1

satis�es the propertyH

i+1

)

g

(H

i

^ l). Similarly we also have G

i+1

)

g

(G

i

^ l). In order to �nd G

i+1

we

add true )

g

(:G

i

_ :l) to the original set of lauses and resolve. The left

hand side of lauses Z )

g

false satisfy Z )

g

(G

i

^ l). As we want to save

lauses derived during this proess and possibly use them later, we add the lause

s

:l

i

)

g

(:G

i

_:l) and thus searh for lauses s

:l

i

^Z )

g

false, derived from

resolving with s

:l

i

)

g

(:G

i

_:l) or its resolvents with other lauses whih are

rewritten as true)

g

(:s

:l

i

_ :Z).

4.2 Step Loop Searh Algorithm

In this setion we propose an algorithm to searh for a loop. For eah eventu-

ality }:l ourring on the right hand side of a sometime lause, the algorithm

onstruts a sequene of DNF formulae, G

i

, by using the previous guess together

with F

j

, where F

j

are disjuntions of literals derived by the appliation of the

algorithm to G

i

. The algorithm is the following.

1. Choose G

�1

, true

2. Given a guess G

i

add the lause s

:l

i

)

g

(:G

i

_ :l) and apply Step Reso-

lution.

3. For all lauses true )

g

(:s

:l

i

_ F

j

) obtained during the generation of

resolvents, let G

i+1

, G

i

^ (

m

_

j=1

:F

j

).

4. Go to 2 until either

(a) G

i

, G

i+1

(we terminate having found a loop).

(b) G

i+1

is empty. (we terminate without having found a loop).

4.3 Example

Let the loop be (a^ b^ ^d) )

g

l, derived from the following SNF lauses.

1: a)

g

l

2: b ^ )

g

d

3:  ^ d)

g

a

4: d ^ a)

g

b

5: a ^ b)

g



6: �)}:l



Aording to algorithm 1 the �rst guess is G

�1

, true. For suh a guess we

add the lause s

:l

�1

)

g

(false_:l). Some of the resolvents derived by applying

step resolution among this lause and 1-6 are

7: s

:l

�1

)

g

:l

8: s

:l

�1

^ a)

g

false [1; 7℄

9: true)

g

(:s

:l

�1

_ :a) [Simp.8℄

Therefore, the next guess will be, G

0

, true ^ a, a.

10: s

:l

0

)

g

(:l _ :a)

11: s

:l

0

^ a ^  ^ d)

g

false [1; 3; 10℄

12: true)

g

(:s

:l

0

_ :a _ : _ :d) [Simp.11℄

Next guess is G

1

, a ^ (a ^  ^ d), a ^  ^ d.

13: s

:l

1

)

g

(:l _ :a _ : _ :d)

14: s

:l

1

^ a ^ b ^  ^ d)

g

false [1; 2; 3; 5; 13℄

15: true)

g

(:s

:l

1

_ :a _ :b _ : _ :d) [Simp.14℄

Aording to the algorithm the next guess is

G

2

, (a ^  ^ d) ^ (a ^ b ^  ^ d), a ^  ^ d ^ b

16: s

:l

2

)

g

(:l _ :a _ : _ :d _ :b)

17: s

:l

2

^ a ^ b ^  ^ d)

g

false [1; 2; 3; 4; 5; 16℄

18: true)

g

(:s

:l

2

_ :a _ :b _ : _ :d) [Simp.17℄

If we apply the algorithm to G

2

then the next guess will again be

G

3

, (a ^ b ^  ^ d) ^ (a ^ b ^  ^ d), (a ^ b ^  ^ d).

G

3

, G

2

whih means termination as G

3

, G

2

and so G

2

is a loop, i.e, G

2

)

g

l.

5 Completeness

In the following we will prove ompleteness for this algorithm by relating it to

the ompleteness of the Breadth-First Searh Algorithm [5℄. We �rst introdue

the Breadth-First Searh Algorithm.

5.1 Breadth-First Searh Algorithm

The Breadth-First Searh Algorithm onstruts a sequene of formulae, H

i

for

i � 0, that are formulae in Disjuntive Normal Form and ontain no temporal

operators. They are onstruted from the onjuntions of literals on the left hand

sides of step lauses or ombinations of step lauses in the SNF-lause-set that

satisfy ertain properties (see below). Assuming we are resolving with }:l eah



formula H

i

satis�es H

i

)

g

l and given H

i

eah new formula H

i+1

satis�es

H

i+1

)

g

H

i

and H

i+1

) H

i

. When termination ours we have H

i+1

, H

i

so that H

i

)

g

l for resolution with }:l. The algorithm assumes that all

neessary step resolution has been arried out.

Breadth-First Searh Algorithm For eah eventuality}:l ourring on the

right hand side of a sometime lause do the following.

1. Searh for all the step lauses of the form C

k

)

g

l, for k = 0 to b, disjoin

the left hand sides and generate the H

0

equivalent to this, i.e. H

0

,

b

_

k=0

C

k

:

Simplify H

0

. If j= H

0

we terminate having found a loop-formula (true).

2. Given formula H

i

, build formula H

i+1

for i = 0; 1; : : : by looking for step

lauses or ombinations of lauses of the form A

j

)

g

B

j

, for j = 0 to 

where j= B

j

) H

i

and j= A

j

) H

0

. Disjoin the left hand sides so that

H

i+1

,



_

j=0

A

j

and simplify as previously.

3. Repeat (2) until

(a) j= H

i

. We terminate having found a loop-formula and return true.

(b) j= H

i

, H

i+1

. We terminate having found a loop-formula and return

the DNF formula H

i

.

() The new formula is empty. We terminate without having found a loop-

formula.

Soundness, Completeness and Termination for the BFS-algorithm [5℄

Given a set of SNF lauses R, that ontains a loop A )

g

l, applying BFS

algorithm will output a DNF formula A

0

suh that A

0

)

g

l and A ) A

0

.

Termination of the BFS algorithm is also established.[5℄

5.2 Completeness of the Step Loop Searh Algorithm

To show the ompleteness of the new algorithm we will prove that for all i � 0,

G

i

, H

i

by indution. Let R be a set of SNF-lauses and}:l be the right hand

side of a sometime lause, we assume that R ontains a loop in l.

Lemma 1. G

0

, H

0

Proof. In order to obtain G

0

, aording to the algorithm, the lause

s

:l

�1

)

g

(:l _ :true) is added, whih is the lause s

:l

�1

)

g

:l (1).

As R ontains a loop, in the initial set of lauses there must be some lauses

suh that they may be resolved together to obtain A

i

)

g

l, 1 � i � k.

By resolution with lause (1) the resolvents are s

:l

�1

^ A

i

)

g

false, 1 � i � k

and by simpli�ation true)

g

(:s

:l

�1

_ :A

i

).

These last lauses are used in order to obtain G

0

as G

0

, true^(A

1

_:::_A

k

),

A

1

_ ::: _ A

k

.



For building H

0

by the Breadth-First Searh Algorithm, the left hand sides of

the lauses A

i

)

g

l are disjoined, giving , H

0

, A

1

_ :::_A

k

, and so, G

0

, H

0

ut

Theorem 1. For all n 2 IN H

n

, G

n

.

Proof. Base ase: By Lemma 1, H

0

, G

0

.

Indution ase: We assume H

k

, G

k

for all k � i, k 2 IN and we prove the

hypothesis for i + 1. We know the following valid statements about H

i+1

from

the de�nition of the Breadth First Searh algorithm:

(a): H

i+1

)

g

H

i

(b): H

i+1

)

g

l

(): G

i

, H

i

(Indution Hypothesis)

(d): H

i+1

) H

i

Assume we have generated guess G

i

and we are about to derive G

i+1

. From the

algorithm the lause s

:l

i

)

g

(:l_:G

i

) is added. Using property () the lause

1 is transformed into

s

:l

i

)

g

(:l _ :H

i

): (1)

Then, applying step resolution, we obtain:

3: s

:l

i

^H

i+1

)

g

:H

i

[b, 1℄

4: s

:l

i

^H

i+1

)

g

false [3,a℄

5: true )

g

(:s

:l

i

_ :H

i+1

) [Simp. 4℄

In order to obtain G

i+1

the algorithm is applied, where the lauses

true )

g

(:s

:l

i

_ F

j

) onsidered in this ase just onsist of lause 5 and thus

G

i+1

, G

i

^ [H

i+1

℄, G

i

^H

i+1

, H

i

^H

i+1

.

By property (d) (H

i

^H

i+1

), H

i+1

, and then G

i+1

, H

i+1

ut

Theorem 2. If G

i

is a loop, then G

i

, G

i+1

.

Proof. Let G

i

, D

1

_D

2

_ ::: _D

n

be a loop.

As usual for the appliation of the algorithm the lause

s

:l

i

)

g

(:l _ :G

i

) (2)

is added.

As G

i

is a loop, there must be a set of lauses in the initial set of lauses that

together represent G

i

)

g

l and G

i

)

g

G

i

.

Resolution an be applied among these lauses and lause 2 produing

s

:l

i

^G

i

)

g

false. By applying simpli�ation this latter lause is transformed

into true)

g

(:s

:l

i

_ :G

i

). Then, G

i+1

, G

i

^G

i

and so G

i+1

, G

i

. ut

Theorem 3. The Step Loop Searh Algorithm is omplete.



Proof. By Theorem 1 and 2.

ut

Theorem 4. The algorithm terminates.

Proof. 1. If there exists a loop in the initial set of lauses, then we know that

Breadth Searh Algorithm terminates �nding a loop H

n

. By Theorem 1,

H

n

, G

n

, so G

n

is a loop and then by Theorem 2 G

n

, G

n+1

. Thus, the

algorithm terminates by 2 (a).

2. If there does not exist a set of lauses whih omprise a loop in the initial set

of lauses then, at some point, it will not be possible to produe the lause

s

:l

i

^ C

i

)

g

false and therefore no lauses true )

g

(:s

:l

i

_ F

i

) will be

derived during the proof and G

i+1

will be empty.

ut

6 The Searh for a Subsequent Loop

We assume that we have deteted a sequene of guesses by applying the previous

algorithm to a set of SNF-lauses, X , with an eventuality }:l but, later we

need to apply temporal resolution again to }:l. Further, the appliation of the

temporal resolution rule to this or other eventualities has led to the generation

of new lauses whih we may use in order to generate a new loop. Let Y be the

set of new SNF-lauses generated. Thus the set of SNF-lauses is now updated

as X [ Y .

Rather than arrying out the full loop searh again, our intention is to re-use

the original loop searh, even though a loop may not have been deteted in the

�rst searh.

6.1 Repeated Step Loop Searh Algorithm

Assume we have G

0

; :::; G

n

guesses from a previous searh for a loop and, the

added set of lauses is Y . We an generate a new sequene of DNF formula, K

i

as follows:

1. Guess K

�1

, false.

2. Given a guess K

i

add the lause s

:l

i

)

g

(:l _ :K

i

) to the piee of proof

of the previous searh orresponding with s

i

, together with the lauses Y .

3. Apply Step Resolution.

4. For all new lauses true)

g

(:s

:l

i

_ F

0

j

) obtained during the proof, let

K

i+1

, (G

i

_K

i

) ^ (

m

_

j=1

:F

0

j

)

5. Go to 2 until either

(a) K

i

) K

i+1

_G

i+1

where K

i

6) false or

(b) K

i

_G

i

, K

i+1

_G

i+1

,

whatever is the earliest.



6.2 Example

We now onsider the example in Setion 4.3 where lause 4 has been deleted.

In this ase, all the guesses remain the same exept the last one whih now will

be the following

16: s

:l

2

)

g

(:l _ :a _ : _ :d _ :b)

17: s

:l

2

^ a ^ b ^  ^ d)

g

:b [1; 2; 3; 5; 16℄

As there are not lauses true)

g

(:s

:l

2

_ ::::), then G

3

, false.

Thus, the searh for a loop failed as the set of lauses did not omprise a loop but

we still an use these previous guesses in order to �nd a loop if the appropriate

lause is later added.

Now we onsider the same example but we add lause 4, that is, d ^ a)

g

b.

Algorithm 2 is now applied, with K

�1

, false. The new lause added is

18: s

:l

�1

)

g

true

Nothing new is added and no lauses from 7-9 in example 4.3 an be resolved

with 4. Thus, K

0

, false and T

0

, a _ false, a.

19: s

:l

0

)

g

true

Again nothing new is added and no lauses from 10-12 in the example 4.3 an

be resolved with 4. Thus, K

1

, false and T

1

, (a ^ b) _ false, (a ^ b).

20: s

:l

1

)

g

true

As happened in the previous ases no new lauses are added from resolution

between 13-15 and 4, so K

2

, false and T

2

, (a^b^^d)_false, a^b^^d.

20: s

:l

2

)

g

true

21: s

:l

2

^ a ^ b ^  ^ d)

g

false [17; 4℄

22: true)

g

(:s

:l

2

_ :a _ :b _ : _ :d) [Simp.22℄

K

3

, (a ^ b ^  ^ d) ^ (a ^ b ^  ^ d), (a ^ b ^  ^ d).

T

3

, (a ^ b ^  ^ d).

T

2

, T

3

. Then T

3

is a loop.

6.3 The New Guess

Let G

�1

; G

0

; :::; G

j

be the guesses generated by applying Algorithm 1 to a set

of lauses X . Let Y be the new set of lauses added to X and T

�1

; T

0

; :::; T

i

be

the guesses obtained by applying Algorithm 1 to X [Y . K

�1

;K

0

; :::;K

p

are the

guesses obtained by applying Algorithm 2.

Theorem 5. The new guess T

i

, suh that T

i

6, G

i

, K

i

6, false has the property

T

i

, G

i

_K

i

.



Proof. We assume that the new guess is generated from the fragment of proof

orresponding to s

:l

i�1

and K

i

6 impfalse whereas K

�1

;K

0

; :::;K

i�1

, false.

Let true )

g

(:s

:l

i�1

_ F

j

) be the lauses used for Algorithm 1 in order to

generate G

i

.

As a result of adding the new lauses Y , if step resolution is applied among these

lauses, X or those ontaining s

i�1

on the left hand side, lauses

true )

g

(:s

:l

i�1

_ C

k

) may be generated, where F

j

6, C

k

. N.B. that C

k

must

exist as we are assuming K

i

6, false.

By applying algorithm 1, the new guess will be

T

i

, G

i�1

^ [(

m

_

j=1

:F

j

) _ (

p

_

k=1

:C

k

)℄

, (G

i�1

^ (

m

_

j=1

:F

j

)) _ (G

i�1

^ (

p

_

k=1

:C

k

))

, G

i

_K

i

:

ut

We have shown that the �rst new guess is like T

i

, G

i

_K

i

. If K

i

6, false then

trivially T

i

, G

i

_ false. Next we will show that this is the ase for all the new

guesses.

Theorem 6. Let i the �rst index suh that T

i

6, G

i

. Then for all j, j � i,

T

j

, G

j

_K

j

.

Proof. We assume that T

j

, G

j

_K

j

. We will prove that T

j+1

, G

j+1

_K

j+1

.

In order to obtain T

j+1

the original algorithm must be applied to T

j

. Thus, the

lause added is s

:l

j

)

g

(:l_:T

j

). As we know that T

j

, G

j

_K

j

the previous

lause an be rewritten as

s

:l

j

)

g

(:l _ :G

j

) (1)

s

:l

j

)

g

(:l _ :K

j

) (2)

As lause (1) was produed while obtaining G

j+1

, the lauses

true )

g

(:s

:l

j

_ F

j+1

) that appeared in the original searh will be generated

again. From lause (2) and X [ Y new lauses true)

g

(:s

:l

j

_C

k+1

) may be

derived. Then by applying algorithm 1.

T

j+1

, T

j

^ [(

m

_

j=1

:F

j+1

) _ (

p

_

k=1

:C

k+1

)℄

, (G

j

_K

j

) ^ [(

m

_

j=1

:F

j+1

) _ (

p

_

k=1

:C

k+1

)℄

, [G

j

^ (

m

_

j=1

:F

j+1

)℄ _ [K

j

^ (

m

_

j=1

:F

j+1

)℄ _ [(G

j

_K

j

) ^ (

m

_

j=1

:C

k+1

)℄

, G

j+1

_K

j+1

As K

j

^ (

m

_

j=1

:F

j+1

) is subsumed by (G

j

_K

j

) ^ (

m

_

j=1

:C

k+1

). ut



6.4 Completeness of the Repeated Step Loop Searh Algorithm

Theorem 7. Algorithm 2 is omplete.

Proof. The proof follows Theorem 5 and Theorem 6 and ompleteness of the

Step Loop Searh Algorithm. ut

Termination

Lemma 2. For all i, K

i+1

) K

i

_G

i

.

Proof. Let T

�1

; T

0

; :::; T

i+1

be the guesses from applying Algorithm 1 to the

lauses X [ Y .

By Theorem 1 and de�nition of Breadth-First Searh algorithm, T

i+1

) T

i

.

By Theorem 6 T

i

, G

i

_K

i

. Then K

i+1

_G

i+1

) K

i

_G

i

. Therefore, K

i+1

)

K

i

_G

i

. ut

Theorem 8. The algorithm for searhing for K

i

terminates.

Proof. We know that the searh for T

i

must terminate beause of termination of

the algorithm desribed in setion 4.2 when T

i

, T

i+1

. By Lemma 2 we know

that K

i+1

) K

i

_ G

i

if K

i

6, false. K

i

has the property that T

i

, G

i

_ K

i

.

Then G

i

_K

i

, G

i+1

_K

i+1

. Therefore K

i

) G

i+1

_K

i+1

. ut

7 Some Advantages of Algorithm 2

Let X be a set of SNF-lauses with an eventuality}:l when we apply Algorithm

1 to X , we obtain a sequene of guesses G

�1

; G

0

; :::; G

n

.

Now we assume that some new set of SNF lauses, Y , have been added and we

intend to searh for a loop in the set of lauses X [ Y .

As we have shown in setion 6.3, if a new set of lauses is added the new guess

has the property T

i

, G

i

_K

i

, where K

i

is given by Algorithm 2. Applying the

algorithm 1 to X [ Y for every new guess T

i

, the lauses that we must add for

generating the next guess are

s

:l

i

)

g

(:l _ :G

i

)

s

:l

i

)

g

(:l _ :K

i

)

Thus, all step resolution amongst lauses s

:l

i

)

g

(:l _ :K

i

) and the set of

lauses X will be produed again, as they were produed when Algorithm 1 was

applied just to X .

If we apply Algorithm 2 instead, we an save all those resolution steps as we

only add lauses of the form s

:l

i

)

g

(:l _ :K

i

).



8 Conlusions and Future Work

In this paper we have presented two algorithms for searhing for loops based

upon step resolution.

The �rst algorithm uses outputs from the previous guess to guide the hoie

for the next guess and its orretness is shown with respet to an existing loop

searh algorithm. The seond algorithm is based on the �rst one and allows us

searh for a seond loop without having to arry out a whole searh again, sine

it uses lauses generated during previous searhes.

In the future we intend to apply these results to the development of strategies

for temporal resolution that allows us to redue the searh spae. In partiular,

we are interested in inorporating the set of support strategy [17, 6℄. In [7℄ the

set of support is de�ned for the ase without eventualities. For full temporal

resolution the situation is more omplex and we intend to ahieve it ombining

and extending the results presented in [7℄ and the results in this paper.

Even though the algorithms presented are used in order to searh for loops

for the appliation of the temporal resolution operation, we an still guide this

searh. Thus, our intention is to de�ne a set of support strategy for temporal

resolution whih involves a set of support for the searh for loops proess and

then ombines it with the set of support for step resolution. Thus, if we onsider

the example in Setion 6.2 the Set of Support (SOS) for searhing for a loop will

inlude lauses of the form s

:l

i

)

g

(:l _ :K

i

).

The pratial eÆieny of the algorithms is part of urrent work. It is ex-

peted to be examined while updating an existing implementation for temporal

resolution where the searh for a loop proess is substituted with the algorithms

presented here.

We also intend to investigate the detailed omplexity of this approah.
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