F. Moyano, C. Fernandez-Gago, and J. Lopez, “A Model-driven Approach for Engineering Trust and Reputation into Software Services”, Journal of
Network and Computer Applications, vol. 69, pp. 134-151, 2016.
NICS Lab. Publications: https://www.nics.uma.es/publications

A Model-driven Approach for Engineering
Trust and Reputation into Software Services

Francisco Moyano, Carmen Fernandez-Gago, Javier Lopez
Network, Information and Computer Security Lab
University of Malaga, 29071 Malaga, Spain
{moyano,mcgago,jlm} @lcc.uma.es

June 22, 2016

Abstract

The ever-increasing complex, dynamic and distributed nature of current sys-
tems demands model-driven techniques that allow working with abstractions and
self-adaptive software in order to cope with unforeseeable changes. Models @run.time
is a promising model-driven approach that supports the runtime adaptation of dis-
tributed, heterogeneous systems. Yet, frameworks that accommodate this paradigm
have limited support to address security concerns, hindering their usage in real sce-
narios. We address this challenge by enhancing models @run.time with the notions
of trust and reputation. Trust improves decision-making processes under risk and
uncertainty and constitutes a distributed and flexible mechanism that does not en-
tail heavyweight administration. This paper presents a trust and reputation frame-
work that is integrated into a distributed component-model that implements the
models @run.time paradigm, thus allowing the system to include trust in their rea-
soning process. The framework is illustrated in a chat application by implementing
several state-of-the-art trust and reputation models. We show that the framework
entails negligible computational overhead and that it requires a minimal amount of
work for developers.

1 Introduction

Two important changes are coming to the Information and Communication Technology
(ICT) world. On the one hand, the service-oriented vision enables on-the-fly improve-
ments upon the functionality available to users. Applications are more dynamic and
call for rapid adaptation strategies in order to meet new requirements and to respond
to their changing environment. On the other hand, the boundaries between physical
and virtual worlds are vanishing with the emergence of the Internet of Things (IoT),
where sensors and actuators are embedded in daily life objects and are linked through
networks capable of producing vast amount of data. The aforementioned reasons blur
boundaries between design and runtime [7]] as they prevent designers from envisioning
all possible circumstances that might appear during the execution of an application.




The widespread adoption of these systems requires addressing three main concerns:
complexity, dynamicity and security. The software engineering community is devel-
oping methods for addressing the first two concerns. In particular, model-driven engi-
neering tames the complexity of systems by working with high-level models of them
[28]. Models@ run.time keeps abstract representations of running systems in order to
reason about changes and drive dynamic reconfigurations [[1], which tackle dynamicity.

One way to address security in these systems is by not taking for granted trust re-
lationships among users, components, and system environments. These relationships
must be explicitly declared, monitored and changed according to the system evolu-
tion. The contribution of this paper is the design and implementation of a trust and
reputation development framework, together with its integration into a platform for
self-adaptive, distributed component-based systems. The advantage of this integra-
tion is that reconfiguration decisions can be reasoned in terms of trust relationships
and reputation information. As a result of such integration, developers can rely on a
development framework that allows them to build highly dynamic, self-adaptive and
trust-aware systems.

A remarkable issue about trust and reputation models today is that they often
present high coupling with the application context, as they are designed as ad-hoc
mechanisms that are plugged into existing applications, which in turn limits their
reusability [4]]. Therefore, one of the goals of our approach is allowing developers
to implement different types of trust models. We achieve this by identifying high level
concepts that form trust and reputation metamodels, and which abstract away from con-
crete instances. Then, developers can use these concepts as building blocks for their
trust and reputation models.

The work presented here is an extension over our previous work [17]. The exten-
sions include an implementation, considerations of reputation, and validation. This is
done in two steps: first, we present a trust and reputation framework that allows devel-
opers implement a broad range of models; second, as we implement this framework on
top of a self-adaptive platform, developers can use the output of the models in order to
reconfigure the system at runtime.

The paper is structured as follows. Section [2] presents some works that are related
to ours. An introduction to a models@run.time platform called Kevoree is given in
Section[3] A brief discussion on trust and reputation concepts is presented in Section[d]
whereas Section [5| describes the implementation of the framework. Section [6] presents
our approach for allowing trust- and reputation-based reconfigurations of the system.
A case study that illustrates the use of the framework in a chat application is described
in Section[7] Section[§]yields experimental results as for the overhead and the amount
of work that the development of such application requires, as well as the limitations of
the framework and technical challenges that we faced. Finally, Section[9]concludes the
paper by presenting some research challenges and lines for future work.

2 Related Work

There is an increasing interest in considering notions of trust in self-adapting systems
in order to leverage reconfiguration decisions, especially in the areas of multi-agent,



component-based and service-oriented systems. In some cases, trust is considered in
its hard variant, where trust is seen as an aggregation of quality of service (QoS) and
security properties. In other works, the soft variant of trust is used, which means that
social aspects such as reputation or preferences are taken into account [23].

As mentioned earlier, trust is seen as a powerful tool to leverage decision-making
even with partial information. This fact is especially remarked in STRATUS [26], a set
of technologies that aim at predicting and responding to complex cyber attacks. When
it detects an attack, the platform switches to back-up components and finds alternative
pathways of communication. The trust model that supports this platform [25] is based
on conditional trust, that is, trust in certain capabilities of a system. The authors argue
that experience-based trust is not useful because configurations in cyber attacks change
frequently, laying statistical analysis useless. They propose ways to make the most out
of the little information available, and introduce concepts like contagion that allows
formalizing trust in a host based on the distance from an infected host. Even when the
underlying idea is the same, they define a model, whereas in our work the model is only
defined by the developer. Also, our framework is more general purpose and includes
the option of implementing reputation models, whereas STRATUS is more specialized
in cyber defence and does not tackle reputation.

A classical scenario of application of trust is multi-agent systems [22], where Vu
et al. [29] propose trust-based mechanisms as a way to self-organize the agents in case
of deceitful information. In particular, the trust value of an agent towards another one
is an aggregate of direct experiences and testimonies. The use of artificial intelligence,
and concretely, machine learning together with trust in order to adapt the behaviour of
agents is proposed in the work by Klejnowski, Bernard, Hihner and Miiller-Schloer
[L3]. They propose an architecture where there is an observer component that gathers
information about the agent and presents it to the controller in two views: a long-
term and a short-term one. The controller finds a suitable behaviour according to this
information. Given that new unexpected situations might arise, agents must be able to
try out new strategies and learn which ones provided the best results.

These works differ from ours in several aspects. They are framed within multi-
agent systems, which means that each agent takes their own reconfiguration decisions.
In our case, the system as a whole acts as a controller of its evolution. We do not
consider machine learning techniques and we tackle both, trust and reputation. The
most important difference is that whereas these works propose their own models, our
framework is model-agnostic, meaning that it delegates to developers the responsibility
of implementing trust or reputation models.

Given the highly open and distributed nature of service-oriented environments, the
traditional use of trust is for either protecting providers from potentially malicious
clients or for shielding clients against potentially malicious providers (e.g. providers
that publish a higher Quality of Service (QoS) than offered). As an example of the first
situation, Conner et al. [2] present a feedback-based reputation framework to help ser-
vice providers to determine trust in incoming requests from clients. As an example of
the second approach, Crapanzano et al. [3]] propose a hierarchical architecture for SOA
where there is a so-called super node overlay that acts as a trusting authority when a
service consumer looks for a service provider.

In both, component- and service-oriented systems, an important research area is



determining the level of trust, or the trustworthiness, of the system as a whole, or of
individual subsystems (i.e. services or components). In case that the trust value is too
low, a reconfiguration takes place in order to try to improve it. In this direction, Haouas
and Bourcier [8]] present a runtime architecture that allows a service-oriented system
to meet a dependability objective set up by an administrator. System dependability
is computed by aggregating ratings provided by service consumers regarding QoS at-
tributes. Then, a reconfiguration manager may look up other available services to meet
the dependability objective. Dependability of the system is computed by the aggre-
gation of each service dependability. In turn, each service dependability is computed
by aggregating a weighted average of ratings provided by service consumers regarding
QoS attributes (e.g. response time) of service providers. The reconfiguration manager
is in charge of querying the service broker to find the available services that can meet
the dependability objective.

Following a similar line of work in component-based systems, Yan and Prehofer
[31]] discuss an adaptive trust management system where several quality attributes can
be used to rate the trustee’s trustworthiness, such as availability, reliability, integrity
or confidentiality. Assessing these attributes requires defining metrics and placing
monitors to measure their parameters. Finally, trust is assessed at runtime based on
the trustor’s criteria and is automatically maintained by changing among trust control
modes.

These previous works are highly focused on Quality of Service (QoS)-based trust,
where trust is an aggregation of dependability and security attributes. Subjective factors
affecting trust and reputation concepts, with which we deal, are out of discussion. The
social notion of trust is used by Psaier et al. [21] in their self-adaptation framework. In
particular, their trust model uses the concept of trust mirroring and trust teleportation.
The former implies that actors (i.e. services) with similar interests and skills tend to
trust each other more than unknown actors, whether the latter denotes that the level of
trust in a member of a group is transferable to other members of the same group. The
adaptations consist of reconfiguring the network by opening channels to provide new
interactions and by closing channels to hinder misbehaving nodes to further degrade the
system function. The trust model is used to help choose among a set of new candidate
nodes with which to communicate.

Another way to measure the (mis)behaviour of components is by comparing its
interactions with the models in their contracts. In this direction, Herrmann and Krumm
[9] propose security wrappers that monitor the activity of the components. Depending
on the deviation of the components’ behaviour with respect to their contract, a positive
or negative report is issued and sent to the trust information system, which calculates a
trust value for the component. In turn, this trust value is used to determine the intensity
of the monitoring activity by the wrappers. This scheme was enhanced by Herrmann
[[LO]] in order to take the reputation of components’ users into account so as to prevent
deliberate false feedbacks. In this regard, a common problem in any setting where
different entities rate each other is discerning fair from unfair ratings. Phoomvuthisarn,
Liu and Zhu [20]] propose a reputation mechanism for SOAs environments that allows
services to retrieve other services’ reputation through auctions that ensure incentives
for truthful reporting.

In our work, we do not use contracts and we are not concerned about fairness of



ratings, as this is something inherent to the model implemented, and thus the responsi-
bility lies in the developer.

Other works focus on the self-adaptation of trust models to match and reflect the
status of the system [14], and on considering the trust in the self-adaptation process
itself [6]. The scope of our work is however different than theirs, because we are
interested in adapting the system as a response of the trust information (and not vice-
versa) and we are not concerned about trust in the self-adaptation process itself.

Kiefhaber et al. [12] present the Trust-Enabling Middleware, which provides ap-
plications running on top of it with methods to save, interpret and query trust related
information. The middleware provides self-configuration and self-optimization and
its goal is balancing the workload of nodes by relocating services. The middleware
also uses built-in functions to measure the reliability of nodes by considering packets
losses. Although this work shares many ideas with ours, there are two fundamental
differences. First, it focuses on load balancing and the distribution of services among
nodes. Second, it does not use the models@run.time paradigm, therefore reasoning
about the current executing system is not straightforward.

As a conclusion of our literature review, the use of trust for assisting decision-
making processes in self-adaptive systems is a topic of growing interest. However, we
have found no framework that allows fast implementation of existing and custom trust
and reputation models, and at the same time, an easy specification of self-adaptation
actions based on trust and reputation information. Another common problem is that
trust and reputation are often mixed up, when they are actually different although in-
terrelated concepts. Our intent with this paper is to bridge these gaps.

3 Kevoree: A Models @run.time Development Platform

Traditionally, the Model-Driven Software Development area has primarily focused on
using models at design, implementation and deployment phases of the Software Devel-
opment Life Cycle (SDLC). However, as systems become more adaptable, reconfig-
urable and self-managing, they are also more prone to failures, which demands putting
in place appropriate mechanisms for continuous design and runtime validation and
monitoring. Models@run.time [[1]] aims to tame the complexity of dynamic adapta-
tions by keeping an abstract model of the running system, pushing the idea of reflection
one step further. The abstract model is synchronized with the actual system and every
change performed on the model is automatically accommodated by the system.
Kevoreeﬂ is an open-source dynamic component model that relies on models at
runtime to properly support the design and dynamic adaptation of distributed systems
[S]. Six concepts constitute the basis of the Kevoree component metamodel. A node is
an abstraction of a device on which software components can be deployed, whereas a
group defines a set of nodes that share the same representation of the reflecting archi-
tectural model. A port represents an operation that a component provides or requires.
A binding represents the communication between a port and a channel, which allows
the communication among components. The core library of Kevoree implements these

Thttp://kevoree.org



concepts for several platforms such as Java, Android or Arduino. Fig. [I] depicts a
snapshot of the aforementioned concepts in the Kevoree Editor, which allows building
systems in a visual environment.

(CNode ) (Component) (_Group__) ([ Channel ]

1386916858 : Rest:

Binding ((Provided port) ((Required port )

Figure 1: Kevoree Architectural Elements

Kevoree adopts the models @run.time paradigm and it boils down the reconfigura-
tion process to moving from one configuration, represented by the current model, to
another configuration represented by a target model. First, the target model is checked
and validated to ensure a well-formed system configuration. Then, the target model is
compared with the current model and this comparison generates an adaptation model
that contains a set of abstract primitives that allow the transition from the current model
to the target model. Finally, the adaptation engine instantiates the primitives to the cur-
rent platform (e.g. Java) and executes them. If an action fails, the adaptation engine
rollbacks the configuration to ensure consistency between the models @run.time layer
and the running system.

Building an application with Kevoree entails two steps. First, developers create
business components through the framework provided by the Kevoree platform. Sec-
ond, components are deployed on nodes and wired together through bindings and chan-
nels. Next sections explain these steps in further detail.

3.1 Kevoree Development Framework

The framework is based on annotations. Components that run on the Kevoree runtime
are created by annotating them with ComponentTypeﬂ

Components can have parameters, which are attributes that are mapped to the re-
flection layer and can be changed at runtime via Kevscript or the visual editor. Addi-
tionally, components provide and require services through their ports.

Listing [T] defines a Console component with one required port, one provided port
and one parameter. The parameter showlnTab determines the appearance of the console
frame and can be changed easily at any time both from the editor and with Kevscript,
a script language provided by Kevoree. The required port textEntered allows sending

2In the same way, there are annotations to create new channels (ChannelType) and nodes (NoeType). For
the purpose of this paper, however, we only need to create new components.



text to other consoles, whereas the provided port showText allows receiving text from
other consoles and show it to the user.

Listing 1: Defining a new component with two ports

@ComponentType
public class Console {

@Param(defaultValue = "true")
protected Boolean showInTab = true;
@OQutput

protected Port textEntered;

@Input
public void showText(Object text)
{

//Show received text

}

The services offered by the Kevoree runtime can be accessed by components through
services injected at runtime. Requesting these services entail adding an attribute of the
correspondent service type, and annotate such attribute with @ Kevoreelnject. For ex-
ample, by using the ModelService type, developers gain access to the system model
and can query it programmatically.

First, a list of the existing nodes in the model is retrieved, and for each of these
nodes, we check its name with the searched name. If they are equal, all the components
running on the node are retrieved. For each component, if the name of the component
type matches the searched one, the instance name of the component is added to the
result list, which is finally returned.

3.2 Deployment in Kevoree

Once business components are developed, they can be deployed in nodes and connected
through ports. This deployment phase can be realised through the Kevoree editor or by
Kevscript.

The editor provides a set of basic, built-in libraries (e.g. nodes, basic components
and channels) and allows loading custom libraries (i.e. custom business components,
customized nodes, channels, etc). It provides drag and drop functionality and a visual
representation of the system architecture. The models can be converted to Kevscript
instructions, being possible to save the model as a .kevs file containing these instruc-
tions.

As the complexity of the system increases, the editor may end up overloaded with
too much information. In these cases, it is possible to deploy the system by manually
specifying Kevscript instructions. Kevscript is a scripting language that allows the
communication with the Kevoree reflection layer. It supports the addition and removal
of nodes, components and channels at runtime.



The Kevoree platform does not support reasoning about security concerns, there-
fore any architectural element such as a node or a software component can join the
system without further checks. Also, there is no cross-cutting criteria to guide the run-
time changes. Our goal is to provide components with trust and reputation capabilities,
which in turn can guide some reconfiguration decisions.

4 Trust and Reputation Concepts

This section provides an overview of the most relevant trust and reputation concepts.
For greater insight on these concepts, we refer the reader to [18}119].

The definition of trust is not unique as it often depends on the application context.
In the scope of this work, we define trust as the personal, unique and temporal expec-
tation that a trustor places on a trustee regarding the outcome of an interaction between
them. This interaction usually comes in terms of a task that the trustee must perform
and that can negatively influence the trustor. The expectation is personal and unique
because it is subjective, and it is temporal because it may change over time.

The implications of trust are embodied in the so-called trust models, which are
abstractions of the dynamics of trust and define the way to specify and evaluate trust
relationships among entities for calculating trust. Another way of defining trust models
is as the technical approach to represent trust for the purpose of digital processing [32].

The heterogeneity of trust models is due to several factors, including the trust def-
inition on which they are built or their application domain. Trust models can be clas-
sified into two broad classes, which cover the two main branches that gave rise to the
adoption of trust in the computational world.

e Decision Models. Trust management has its origins in these models [16]]. They
aim to make more flexible access control decisions, simplifying the two-step
authentication and authorization process into a one-step trust decision. Policy
models and negotiation models fall into this category. They build on the no-
tions of policies and credentials, restricting the access to resources by means of
policies that specify which credentials are required to access these resources.

e Evaluation Models. These models have their origin in the work by Marsh [15].
Their intent is to evaluate the reliability (or other similar attributes) of an entity
by considering factors that have an influence on trust relationships. An impor-
tant sub-class of the former are propagation models, in which existing trust re-
lationships are exploited to generate new trust relationships. Another important
sub-class are reputation models, where a reputation scored is derived from the
aggregation of other entities opinions.

The framework presented in this work is built upon the concepts behind evalua-
tion models. This means that the framework is tailored to support the implementation
of evaluation models, rather than decision models. We present next the most impor-
tant concept related to evaluation models, as well as some discussion on reputation
concepts.

30ur previous work [[18]] gives details on the sources that we used for this analysis.



4.1 Evaluation Models Concepts

Trust is computed by a trust model that must have, at least, two entities which have to
interact in some way. Entities play roles and in the most general case, these roles are
trustor, the entity which places trust, and trustee, the entity on which trust is placed.
However, depending on the context and complexity of the model, other roles are pos-
sible. For example, entities can be witnesses if they inform about their opinions of
other entities based on observations or their own experience. Entities can also be factor
producers, meaning that these entities generate factors that are considered by the trust
model in order to yield trust values. Some specializations of trustors and trustees in-
clude requesters of services or resources, providers of services or resources, or trusted
third parties that issue credentials or gather feedbacks to compute a centralized reputa-
tion score.

Once there is a trustor and a trustee, we say that a trust relationship has been es-
tablished. Trust relationships are tagged with a trust value that indicates to what extent
the trustor trusts the trustee. This value has a dimension, which indicates whether it is
a single value or a tuple of values. Trust values are assigned to relationships by a trust
assessment process. The concept of trust assessment, and all the concepts related to
it, are the most important ones in evaluation models, as they may become the model
signature, what makes a model different from others. In order to carry out the trust
assessment process, trust metrics are used. Trust metrics use factors and combine them
in order to yield a final score for the measured attributes. We can see in Section [7]dif-
ferent ways of trust metrics in the different models that are going to be implemented
as examples of our framework. These metrics are specified in these cases mainly as
mathematical functions. Factors are variables that influence a trust relationship and
may include trustee’s and trustor’s subjective properties such as honesty, confidence,
feelings, willingness or belief; and trustee’s and trustor’s objective properties like ob-
served behaviour, security, ability, a given set of standards or reputation. Trust metrics
use computation engines, which determine the way factors are combined, and which
range from simple summations to more sophisticated ones like belief, Bayesian, fuzzy
or flow engines. Sources of information that may feed the engines include direct expe-
rience (either direct interaction or direct observation), sociological and psychological
factors, and third party referrals. Regardless of which information sources are used to
compute trust values, the model might consider how certain or reliable this information
is (e.g. credibility of witnesses), and might also consider the concept of time (e.g. how
fresh the trust information is). Fig.[2] which is taken from [18]], depicts the relation-
ships among the discussed concepts and some other concepts that go beyond the scope
of this work.

4.2 Reputation Concepts

Reputation models use public trust information from other entities to yield a reputation
score. Whereas the boundaries between trust and reputation are often blurry in the
literature, it is agreed that reputation is a factor that may influence trust decisions [[L1].
We largely base our reputation terminology on web reputation systems [4]].
Reputation models can be centralized, when there is an entity in charge of collecting



Sociological
Information
Direct
Experience

Direct
Interaction

Direct
Observation

Summation/ Fuzz, ts 0.
\—’—‘H Bayesian H l Yy ‘{ Factor 'epresens Attribute
Belief

Discrete

Flow Englne

’ Trust ’H Bootst

. ootstrapping
Propensit!
opensity Uncenalmy/ “ Time

feed: i
uses Trust Metric eeds|  Source of i< y
‘ Information Information
i
Tuses might might h y\e\ds[

Score Model ‘

‘ consider. consider

3rd Party
Referral
Operators 2| Indirect Trust Tr?:\;::tlc
T Computation Trust Lifecycle liApproach 4 Centralized Distributed

Soclo
Aggregator Thas cog nmve
loHows
P i Behaviour Trust
Dimension
Model [ >{ Model compules Value sio

might exploit ’I\ has

disseminates

quantifies

might be a

P property of Trust 1
Transitivity Relationship

Objectivity

Figure 2: Concepts for Evaluation Models

and distributing reputation information; or distributed, when there is no such a role and
each entity has to maintain a record of trust values for any other entities, and send out
this information to the rest of entities. A reputation statement is a tuple of a source
entity, a claim and a target entity. A source entity is any entity in the system capable of
making claims about another entity of the same system, which is called a target entity.
A claim is a statement made by a source entity about a target entity. Reputation models
use reputation engines that take reputation statements about a given target as inputs and
yield a reputation score for that target.

S Integrating Trust and Reputation in Models @ Run.time

The main contribution of this paper is a framework that integrates the notions of trust
and reputation into the Kevoree component model described in Section 3] and is an ex-
tension over our previous work [17]]. This framework consists of several classes that de-
velopers can customize by inheritance and by overriding or implementing some of their
methods[] These classes use the Kevoree framework classes as the fundamental build-
ing blocks in order to make the integration with Kevoree possible. Developers using
our framework can build trust and reputation models right into the models @run.time
platform provided by Kevoree, which in turn enables that trust and reputation infor-
mation can be used in order to make reconfiguration decisions at runtime. Developers
can use this framework in order to build trust and reputation models for self-adaptive
systems. Trust and reputation information that these models generate can be used to
make reconfiguration decisions.

4The interested reader can check more information about the Javadoc or source code infhttps: //www.
nics.uma.es/development/trust-and-reputation-framework-modelsruntime

10


https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime
https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime

The framework consists of an API for developers with some base components that
can be extended, some methods that can be overridden, and configuration files. The rest
of this section describes the most important aspects of the framework implementation
and its integration in the Kevoree component model.

5.1 Trust and Reputation Metamodels

We use the Eclipse Modelling Framework (EMFE] to create metamodels for trust and
reputation. These metamodels gather a set of concepts and relationships among these
concepts that abstract away the particularities of different trust models, in such a way
that different metamodels instantiations yield different models. Fig.[3]and ] show the
trust and reputation metamodels, respectively.

T
tRelationships _ ]
0 © context : EString
— = idTRelationship : EString
[ ———
. trustee
0 . H Trustee trustValue
"
[ Factor = idTrustee : EString X
[Er—————— L
= context : EString ]
rustValue

o idFactor : EString
© idSender : EString
= idTarget : EString
o name : EString

0.7 \trustorTrustees = value : EString
o timeStamp : EString

trustor

L | value metrigFactor U(d\jmwms

B Factorvalue
o value : EString
= timeStamp : EString

H Metric
o idMetric : EString
= context : EString
o engine : ElavaObject

H Trustor
= idTrustor : EString

trustorMetrics

Figure 3: Trust Metamodel

The trust metamodel includes the concept of TrustRelationship, which is a tuple of a
Trustor, Trustee and TrustValue. Trustors use Metrics to evaluate their trust in Trustees.
Metrics use a set of Factors, which in turn have a FactorValue. Different trust models
are created by instantiating the entities that play the trustor and trustee roles, the factors
that are considered and the way these factors are combined in a metric.

The core concept of a reputation metamodel is a ReputationStatement, which is a
tuple containing a Source entity, a Target entity and a Claim, which has a ClaimValue.
A ReputationMetric is used in order to aggregate Claims. Reputation models are cre-
ated by instantiating the entities that play the source and target roles, the way claims
are generated and their type, and the way the metric combines the claims.

Note that these metamodels gather many of the concepts explained in Section []
In both metamodels, other important concepts from the conceptual framework are in-
cluded as attributes, like Context and Time. Other concepts from the conceptual frame-
work that are not presented explicitly in the metamodel are included implicitly in the
implementation. For example, factors can be objective and subjective, but the differ-

Shttp://www.eclipse.org/modeling/emf/

11



statements | ] ReputationStatement
B ReputationRoot = e

.* | © context : EString

repMetric:
0.,

H ReputationMetric -
=] ic : EString [ H Source g e

o idSource : EString e Tt

© name : EString

S g ]

© idTarget : EString

camvalue
1
H ClaimValue
= value : EString
o timeStamp : EString

Figure 4: Reputation Metamodel

ence is only made at the implementation level with methods available to entities, such
as addSubjectiveFactor. Engines are concrete implementations of Metrics.

Another example concerns centralized and distributed reputation models. As we
see in the next section, centralized reputation models include entities that must send
their claims to a component that stores them and which compute reputation, whereas
distributed reputation models comprise entities that store their own claims and which
compute reputation themselves. In summary, metamodels provide a basic skeleton of
relevant concepts, which are enriched during implementation to accommodate more
concepts discussed in the conceptual framework

From these metamodels, the EMF generates code that constitutes an API to man-
age these metamodels. This code does not need to be visible to developers, who can
be oblivious about how trust models are instantiated and managed internally by the
framework. We use this code as an internal API that acts as an interface between the
trust and reputation components and the underlying trust or reputation model.

The following sections describe the trust and reputation components, respectively,
that constitute the frameworkf]

5.2 Trust Framework

This section describes how the trust part of the framework is implemented. As men-
tioned earlier, this implementation is hidden from developers, as they do not need to
know the implementation details in order to use the framework.

One of the main components in the trust framework is TrustEntity, which describes
an entity capable of participating in a trust relationship. That is, each business compo-
nent that we want to include in the trust dynamics must inherit from this component.
Listing 0] shows an excerpt of the implementation.

We use Java generics so as to allow developers to set the types for the trust values
and the factor values, respectively. We define several parameters for this component.
The role parameter states whether the entity plays a trustor role, a trustee role, or both
roles. The entity can also specify a trust context where its relationships are framed.
Entities can belong to groups and their trust relationships are to be initialized according

SIn the next sections, we will refer to some listings that are in Appendix@for readability’s sake.

12



to the value of bootstrappingTrustValue parameter. The last parameter denotes the
name of a file containing subjective factors information during initialization.

A trust entity requires services in order to update a trust relationship through the
port requestTrustUpdate, to initialize its trust relationships through initTrustRelation-
ships, and to add factors through addFactor. In the start() method, which will be called
by the Kevoree framework at start-up, a unique identifier for the component is gener-
ated by the context service of Kevoree, which provides some basic context information
such as the name of the instance and the node where the instance is running. Then, a
request to initialize trust relationships is sent to a TrustManager component, and finally
subjective factors are stored in the model.

Subjective factors are initialized by means of a file that the developer can configure
for each trust entity. The format of the file is:

FactorName FactorValue <TargetEntity>

The last parameter is optional and denotes the entity to which the subjective factor
applies. For instance, if an entity A thinks that another entity B is competent, the file
with A’s subjective factors would include:

PerceivedCompetence High B

The most important methods offered by the TrustEntity component are changeSub-
JectiveFactor(), requestTrustUpdate(), and trustRelationshipUpdated(). The former al-
lows trust entities to increment or decrement an existing subjective factor or to create
a new one. The second one requests an update of a trust relationships with a trustee,
and the latter is called by the framework when the update is done. Clients can invoke
the first two methods and can override the last one in order to make business-level de-
cisions based on trust values. By default, when the client calls requestTrustUpdate(),
reconfiguration of the system might occur. An overloaded version of the method allows
explicitly inhibiting a reconfiguration after the update by setting a parameter to false.
The method getLastTrustValue() provides access to recently computed values.

TrustEntity components interact with a TrustModel component, which manages the
trust metamodel and is in charge of computing trust values. Listing [I0] shows how
the initialization of trust entities relationships is performed. The key of this method
is the call to the static method getTrusteesInstanceName(), provided by the GetHelper
class, which is a utility class that allows querying and retrieving information from the
reflection layer. We consider that an entity is trustee with respect to another entity if it
plays that role and they share the same context. The last line of code calls an internal
method in order to add the trust relationship to the metamodel, for which the EMF API
(see Section is used, as depicted in Listing

Clients of TrustModel can invoke several methods in order to retrieve factor infor-
mation, and can override two methods, compute() and computeThreshold(). This is
illustrated in Listing[I2] Retrieving factor values is essential in order to implement the
trust engines, which need these values to compute trust. Trust engines are implemented
by overriding the compute() method, and optionally, the computeThreshold() method.

13



The last important component of the the trust framework is the FactorProducerﬂ
This type of entity adds objective factors about other entities by using low-level plat-
form services that provide information about the components and their communica-
tions. This is a key component to QoS-based trust models, as it allows the model
to easily take into account information about the response times, number of failures,
uptime percentage of services, and so on.

Clients of this component must set the instance identifier of the target entity and
override the method doEvaluation(). This component can work in two ways: by as-
signing a value at initialization time, and by monitoring the target at a regular interval
that developers can also specify in another parameter. The value returned by the method
is automatically included as a factor in the method, and engines can retrieve the factor
during the computation.

The next section revises some implementation details of the reputation framework.

5.3 Reputation Framework

The reputation framework allows the implementation of centralized and distributed
reputation models by means of CentralReputableEntity and DistReputableEntity com-
ponents, respectively. The former requires the communication with a ReputationMan-
ager component in order to send to it the claims and retrieve reputation information,
whereas the latter requires a ReputationEngine that will be in charge of computing
reputation for the component.

Part of the CentralReputableEntity implementation is presented in Listing[I3] Again,
reputation takes place in a trust context, and entities may belong to a group and need
a unique identifier uid. These entities also require a port through which to send their
claims and request reputation information. Two important methods offered to clients
are makeClaim() and requestReputation(), which allow sending claims to and retriev-
ing reputation information from the ReputationManager. Another important method
that client code can override is reputationReceived(), as depicted in Listing [I3] This
method is called by the framework when a new reputation value of an entity is com-
puted. As in the case of TrustModel, when a reputation update is requested, the default
behaviour is reconfiguring the system in case it is required, although the client can
explicitly disable the reconfiguration by setting the corresponding parameter to false.
CentralReputableEntity also caches the last computed reputation values in order to
provide faster access, through the method getLastReputation(), to the reputation of an
entity with which it interacted in the past.

The other important component of a centralized reputation model is the Reputa-
tionManager, which interacts with the reputation metamodel and offers methods to
retrieve claims information. It also provides the method compute(), which clients must
implement for their reputation engines. An excerpt of the implementation is depicted
in Listing [T4] As an example, the method gerClaimValues() retrieve the values of all
the claims that are issued in a specific context, with a specific name and for a concrete
target entity. Clients can inherit from this class and override the method compute().

7This component is explained for completeness. However, in the scope of this work we are interested in
the social notions of trust and reputation, therefore the chosen models in SectionE]do not use this component.

14



The other type of reputation model, namely distributed reputation models, are built
around two components: DistReputableEntity and ReputationEngine. The former rep-
resents an entity capable of issuing claims (such as CentralReputableEntity), but which
is responsible to store its own claims and to send them to other entities that may request
them. The latter is a reputation engine that belongs to a distributed entity. A reputation
engine is bound to an entity at start-up, as illustrated in Listing [[5] As in the case of
the CentralReputableEntity, this component provides several methods to issue claims
and to request reputation updates. Clients can also override methods to react when a
new reputation value arrives.

Clients using ReputationEngine must implement the method compute() and can
gain access to the claims in the system by methods like the one shown in Listing [16]
which retrieves all the claims made by an entity about a particular subject, represented
by the name of the claim.

Next section discusses how the framework provides trust-based self-adaptation.

6 Trust-based Self-Adaptation

The interesting advantage of implementing the framework on top of a self-adaptive
platform is that developers can use trust and reputation information to change the sys-
tem at runtime. Regardless of the implemented model, the output of the model (i.e. the
trust or reputation value) can be used to make reconfiguration decisions.

6.1 Policy-based Reconfiguration

The framework supports the reconfiguration process by means of policies in the form
of simple rules. Rules for reputation-based reconfiguration are as follows:

CType BooleanCondition Action <Args>

where CType is the type of the component for which the reputation is to be used in
the BooleanComparison. If this comparison is true, then Action is executed with the
required arguments (Args). Trust-based reconfiguration rules are similar:

CType CType BooleanConditionlthreshold Action <Args>

where the first CType is the type of the trustor and the second one is the type of the
trustee. Either the trust value is compared according to the BooleanComparison or the
model threshold is used to determine whether the Action should be executed with the
required Args.

The actions currently implemented in the framework are remove and substitute.
The former does not require arguments and tells the runtime system to remove the
component if the boolean condition is met. The latter requires an argument, which is
another component type, and tells the system to substitute the current component by
another component of the new type if the condition is fulfilled.

Let us illustrate with a couple of examples. Consider the following reputation-
based reconfiguration policy file:

15



Console <1 substitute FilteredConsole
FilteredConsole <0 remove

This policy is specifying the following: “if the reputation of any instance of type
Console is less than 1, then substitute it by another component instance of type Fil-
teredConsole. Likewise, if the reputation of any instance of type FilteredConsole is
less than O, then remove it”.

Consider now the following trust-based reconfiguration policy file:

Console Console threshold substitute Console
Console Console <0 remove

The policy is specifying the following: “if a trustor of type Console does not trust
a trustee of type Console over a threshold (defined by the model), then substitute the
trustee by a new component of type Console. Likewise, if the trust that a trustor of type
Console places in a trustee of type Console is less than 0, then remove the trustee”.

In addition to the new component type, the substitute action can have an undefined
number of parameters that represent attributes of the new instances and their values.
If no parameters are found, it is assumed that new instances should replicate the same
values of the attributes of the instances removed.

As an example, consider the following:

Console <1 substitute FilteredConsole group A
FilteredConsole >5 substitute Console

This policy is specifying the following: “if the reputation of any instance of type
Console is less than 1, then substitute it by another component instance of type Fil-
teredConsole and set its parameter group to the value A. Likewise, if the reputation of
any instance of type FilteredConsole is more than 5, then substitute it by a component
instance of type Console and set all the parameters that have the same name to the same
values that the previous instance had”.

6.2 Implementation

In this section, we explain some details of the implementation. The main class is
ScriptEngine, which encapsulates the actions and generates the Kevscript instructions.
The reputation framework provides the class ReputationRulesEngine, which process
the policy file and calls the script engine to generate the adaptation script. Likewise,
the trust framework uses the class TrustRulesEngine for the same purpose. Listing[T7]
shows the initialization of DistReputableEntity. Note that instances of ScriptEngine
and ReputationRulesEngine are created, and that the former is passed as an argument
to the latter, together with the name of the policy file (RepRules.policy by default).
The listing also shows an internal method of the framework which calls the compute()
method of the reputation engine and which determines whether the user wants to re-
configure the system, in which case the method executeRules() of the ReputationRule-
sEngine class is called. In turn, this method reads the file and executes, via the instance
of ScriptEngine, the rules for which the boolean condition is met.

16



As an example of how ScriptEngine executes Kevscript instructions, Listing [I§]
shows the implementation of the action remove. Once the name of the instance in the
reflection layer is obtained (by trimming the name of the node where it is executing),
the script is executed by means of the ModelService variable model, which allows
submitting scripts as a String and checking the results in a callback.

Substituting a component entails more work, as a new component must be created
and must be ensured that it will be able to continue its communication with the rest
of components. Given that the code is much longer, we simply enumerate the steps
required for this actiorﬂ

1. Obtain information (if necessary) about the attributes of the instance to be re-
moved.

2. Obtain information about the bindings and channels of the component to be re-
moved.

3. Remove component.
4. Create new instance name of the type specified in the policy file.
5. Add the component and link it to the channels via new bindings.

6. Add new attributes, which could be the same as the ones of the previous instance.

7 Application Example: A Trust-Aware Distributed Chat

In this section, we explain how we can implement several well-known trust and reputa-
tion models. First, we provide a brief description of each model followed by high-level
steps required to implement them. We also show the most relevant code for the imple-
mentation of each model’l

The chosen scenario is a distributed chat application, because it is a simple scenario
that allows illustrating the use of trust and reputation models easily. The mechanics
are similar for every model: a console receives a message from another console and
inspects the contents of the message. Depending on these contents (e.g. if it detects a
swear word), it provides a stimuli to the trust or reputation model. This stimuli may be
claims or changes in factors, as it will be illustrated in each model.

N. B., that it is out of the scope of the paper to determine how the trust and reputa-
tion values are obtained for the models we are describing next. N.B. also some of the
chosen models used both, trust and reputation values. Our framework does not allow to
integrate a reputation model into a trust model that uses reputation, therefore we have
to assume that the trust and reputation values are given to us.

8The interested reader can check more information about the Javadoc or source code in ht tps: //www .
nics.uma.es/development/trust-and-reputation-framework-modelsruntime
“We omit some error checking and boiler plate code for the sake of better understandability.

17


https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime
https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime

7.1 eBay Model

In the eBay reputation model, after a transaction occurs, both the seller and the buyer
can rate each other by a positive (—1), neutral (0) or negative feedback (1). The repu-
tation for an individual is then calculated by summing up the distinct ratings for such
individual [24]. The model is centralized, in such a way that all the feedbacks are sent
to a central system that computes the reputation, and each user can query and see this
reputation in the form of an html page.

This model is mapped to our example as follows. Once a console receives a mes-
sage from another console, it looks for offensive words contained in the message, and
which are previously configured by the user. If any offensive word is included, then
a negative feedback about the sender is issued (—1); otherwise, a positive feedback is
sent(1).

The implementation of this model in the framework requires the following coarse-
grained steps:

e Consoles must inherit from CentralReputableEntity,
e Consoles invoke the method makeClaim upon receiving a message.

e Reputation engine inherits from ReputationManager and overrides the method
compute().

Further details are provided in Listing[2] A console component inheriting from a
central reputable entity is created. The generic type is instantiated to String because
that is the format in which we want to represent the reputation value. Then, upon re-
ceiving a message through the input port showText, it tokenizes the message to retrieve
the identity of the sender and the text itself (provided by the console or by the middle-
ware itself), and if any offensive word is found, it issues a negative claim with name
CleanWords; otherwise, it issues a positive one. The message is temporarily stored in
lastMessageReceived (if there are no offensive words) and an update of the reputation
of the sender is requested, which will call the reputation engine. In turn, the reputa-
tion engine will automatically call the method reputationReceived with the identity of
the entity and the new reputation value. In this method, we could perform additional
checks to determine whether the console should print the message or not.

Listing 2: Console in the Ebay Reputation Model

@ComponentType
public class CentralReputationAwareConsole extends
CentralReputableEntity <String > {

// 1t stores the last message receive
private String lastMessageReceived;

@Input
public void showText(Object text)

{
if ( text != null ) {
String msg = text.toString ();

18




StringTokenizer st = new StringTokenizer( msg, "."

);
String idTarget = st.nextToken();
String message = st.nextToken () ;

if ( badWordsInMessage ( message ) )
{

lastMessageReceived = ;

makeClaim (" CleanWords", "—1", idTarget);
}
else
{
lastMessageReceived = message;
makeClaim( "CleanWords", "1", idTarget );
}
requestReputation( idTarget );
}
}
@Override
public void reputationReceived( String target, String
newVal )

{
//We could check if the reputation is above a given
threshold prior to showing the message
thisConsole .appendIncomming ( "—>" + lastMessageReceived

)

The reputation model, depicted in Listing 3] implements the Ebay reputation en-
gine. First, it retrieves all the claims named CleanWords about the target idTarget. If
there are no claims about the target, then a default value is returned, otherwise, the
reputation value is computed by summing up all the claim values.

Listing 3: Ebay Reputation Engine

@ComponentType
public final class EBayReputationModel extends
ReputationManager<String > {

@Override
public String compute( String context, String idTarget,
String idSource ) {

List<String > claims = getClaimsValues( context, "
CleanWords", idTarget );

float res = 0.0f;

if ( claims != null )

{

//By default reputation

19




if( claims.size() == 0 )
{

return "1.0"; //Initial reputation

}

for ( String c : claims )
{
res += Float.valueOf( ¢ );
}
1

return String.valueOf( res );

7.2 Marsh’s Trust Model

Marsh was one of the first authors that formalised trust in a computational setting [[15].
His model considers the following factors:

e Utility (U,): this factor measures the utility that entities would obtain from a
successful collaboration.

e Basic trust or trust disposition(77,): this subjective factor indicates what is the
attitude of an entity towards higher or lower values of trust.

e Importance (1,,): this subjective factor indicates how important a situation is for
an entity.

e Perceived Competence: this subjective factor states how competent the trustor
thinks that the trustee is for the task in play.

e Perceived Risk: this subjective factor denotes how risky the entity thinks the
situation is.

e General trust (T}, (y)): this refers to the trust that the trustor places in the trustee
as a consequence of the history of interactions.

The model uses the aforementioned factors to calculate the so-called situational
trust, which according to the author is the most important when considering trust in
cooperative situations. Situational trust is defined as:

Tx(y,a) = Um(a) X Im(a) X T:v(y)

where x is the trustor, y is the trustee, and « is the situatio Marsh also models what
he calls a cooperation threshold:

CTo(0) = PerceivedRisk, () ()
PerceivedCompetence,,(y, o) + Ty (y)

10The situation for Marsh is what we call context.

20




The model states that an agent engages in a collaboration with another agent if the
situational trust is greater than the cooperation threshold. In order to implement the
model in the framework, the following steps must be performed:

e Consoles inherit from TrustEntity.
e Consoles add their subjective factors.
e Consoles change their factors in response to the received messages.

e Trust engines inherit from TrustModel and overrides the methods compute() and
computeThreshold().

In order to initialize their subjective factors, we create a simple text file with a list of
factor value <target>, where factor represents the factor name, value denotes the value
of the factor and target, which is an optional parameter, the name of the component
instance to which the factor refers. An example of this file for one of the consoles
in Marsh’s is illustrated in Table [I| The name of this file is assigned in Kevscript or
from the editor for each console. Once the trust relationships of the console have been
initialized, the file is read and the factors are stored.

Table 1: Trust Factors for Marsh’s Model

Factor Value Target
utility 1.0 -
trustDisposition 0.8 -
importance 0.4 -
perceivedRisk 0.2 -
perceivedCompetence 0.9 console234@node0

Listing [4] shows the console implementation. First, it inherits from TrustEntity, the
generics of which are instantiated to String and Float, because this is the format we are
representing the trust values and the trust factors, respectively. When a console receives
a new message and after retrieving metadata (e.g. the sender, which is the trustee of
the relationship), it stores the message and looks for offensive words in the text. If any
offensive word is found, it invokes the method changeSubjectiveFactor(). The argu-
ments tell that the factor perceivedCompetence that refers to the trustee entity should
be decreased by —0.1, and in case this factor does not exist, it should be initialized to
0. Finally, the console requests a trust update about its trustee.

When the trust update is completed by the trust engine, this will call the method
trustRelationshipUpdated(), which indicates the trustee to which it refers, and a list
with two potential values. The first value represents the actual new trust value, whereas
the second value is the threshold value{lzl Depending on their relationship, the message
is finally printed or not.

"The factor may not exist if a reconfiguration has taken place and a new component has been added for
which there is not such factor.

12We say potentially because not all trust models include a trust threshold computation and therefore, in
that case, it would be up to the developer to hard-code a reasonable threshold.

21



Listing 4: Console in Marsh Trust Model

@ComponentType
public class TrustAwareConsole extends TrustEntity <String , Float
>
/7.
@Input
public void showText(Object text)
{
if ( text != null ) {

String msg = text.toString();
StringTokenizer st = new StringTokenizer( msg,

non

)
String trustee = st.nextToken ();
String group = st.nextToken();
String message = st.nextToken();

lastMessageReceived.put( trustee , message );
if ( badWordsInMessage( badWords ))
{
changeSubjectiveFactor ("perceivedCompetence",
—0.1f, 0.5f, trustee );
}
requestTrustUpdate ( trustee );
}
}

@OQOverride
protected void trustRelationshipUpdated (final String
trustee , List<String> newVal) {

float trustValue = Float.valueOf(newVal.get(0));
float threshold = Float.valueOf(newVal.get(1));

if ( trustValue >= threshold )
{
thisConsole . appendIncomming ( lastMessageReceived.
get( trustee ) );

The trust engine is shown in Listing [5] First, it inherits from TrustModel and in-
stantiates the generics to String and Float, which again are the formats of the trust
values and trust factors. Here, the developer must implement the methods compute()
and incrementFactor() and can implement the method computeThreshold(). The for-
mer computes a trust value from the trust factors as discussed earlier in the description
of the model. The second method determines how an increment/decrement should be

22




performed depending on the concrete generics instantiation. The latter allows com-
puting a threshold from the trust factors as discussed earlier in the description of the
model.

Listing 5: Trust Engine for Marsh’s Model

@ComponentType
public class MarshModel extends TrustModel<String , Float>
{

@Override
public String compute(String context, String idTrustee ,
String idTrustor)
{
float utility = Float.valueOf( getFactorValue( context,
"utility ", idTrustor ));

float importance = Float.valueOf( getFactorValue (
context , "importance", idTrustor));

String generalTrustString = getFactorValue( context, "
generalTrust", idTrustor, idTrustee );

float generalTrust = Float.valueOf( getFactorValue (
context, "generalTrust", idTrustor, idTrustee ));

float situationalTrust = utility * importance x*

generalTrust;

addFactor( context, "generalTrust", situationalTrust ,
idTrustor , idTrustee );
return String.valueOf(situationalTrust);

}

@Override

protected String computeThreshold(String context, String
idTrustee , String idTrustor)

{
float perceivedRisk = Float.valueOf( getFactorValue (

context, "perceivedRisk", idTrustor ));
float perceivedCompetence = Float.valueOf(
getFactorValue ( context, "perceivedCompetence",

idTrustor , idTrustee ));
float generalTrust = Float.valueOf( getFactorValue (
context, "generalTrust", idTrustor, idTrustee ));
float importance = Float.valueOf( getFactorValue (
context, "importance", idTrustor));

float threshold = importance * perceivedRisk / (
perceivedCompetence + generalTrust );

return String.valueOf( threshold );

23




@OQverride
protected String incrementFactor(String currentValue,
String increment) {
return String.valueOf( Float.valueOf( currentValue ) +
Float.valueOf( increment ));

7.3 PeerTrust

Xiong and Liu [30] propose PeerTrust, a distributed reputation model oriented towards
Peer-to-Peer scenarios. This model, as in the case of most reputation models, builds a
reputation score upon feedbacks that peers yield after their collaboration. In addition
to the feedbacks, the model proposes using the following factors:

e Number of transactions that a peer has had with another peer.

o Credibility of the feedback; feedbacks from more trustworthy peers should weight
more in the calculation.

e Transaction context, which refers to metadata about the context where the trans-
action or collaboration is taking place.

o Community context, which relates to incentives for providing feedbacks.
The general trust metric is the following:

I(u)
T(u)=a- ; S(u,1) - Cr(p(u,q)) - TF(u,i) + 3 - CF(u)

?

where I(u) is the total number of transactions that peer u had with the rest of peers,
p(u, 1) denotes the other participating peer in peer u’s ith transaction, S(u, 1) is the
satisfaction peer u receives from p(u, i), Cr(v) denotes the credibility of the feedback
submitted by v, TF(u, ) is the transaction context factor for u’s ith transaction, and
CF(u) denotes the community context factor for peer u. « and 3 are weights for the
collective evaluation and the community context factor.

In our example, we identify each transaction with a message sent and received by
two communicating consoles. We lay the community context aside (i.e. 5 = 0) and
focus entirely on the collective evaluation (i.e. a = 1). The authors of the model
provide hints about how to calculate the credibility and the context factor. In particular,
the credibility can be calculated using the following formula:

Cof) — T (.9)

)

; T(p(u, i)

24



which uses the ratio between the current reputation of the peer that sent the satisfaction
feedback and the total reputation of all peers that previously collaborated with .

Regarding the context factor, the authors mention that a time-stamp of the transac-
tion can be used in order to give more relevance to more recent transactions. One way
to model this is by the following formula:

TS (u,1)
TF(u,1) = ————
(1) CurrentTime
where T'S(u, ©) is the time when the ith transaction took place.
Once we have this, we can implement the model in the framework following these
high-level steps:

e Consoles must inherit from DistReputableEntity,
e Consoles invoke the method makeClaim upon receiving a message.

e Reputation engine inherits from ReputationEngine and overrides the method
compute().

e Console is assigned the reputation engine created.

The console code is similar to the one shown in Listing[2} The difference is that in
this case we are dealing with a distributed reputation model, therefore consoles must
inherit from DistKevReputableEntity and each console is responsible to compute repu-
tation values, instead of delegating this task to a reputation manager. Thus, in the start
method of the console, we need to specify which reputation engine the console will
use, as depicted in Listing[6]

Listing 6: Binding Reputation Engine and Console

@ComponentType
public class DistReputationAwareConsole extends
DistKevReputableEntity <Float>

@Start
public void startConsole ()

{

super.start( new PeerTrustModel() );

//More console—specific initialization stuff

The code for the reputation engine is illustrated in Listing[7] which implements the
formula described earlier for PeerTrust. Note that the method calculateTotalReputa-
tion() is not part of the framework, but a way to modularize the compute method.

Listing 7: Binding Reputation Engine and Console

‘public class PeerTrustModel extends ReputationEngine <Float>

25



@OQOverride
public Float compute(String context, String idTarget,
String idSource)
{
List<ReputationStatementInfo> allStatementsAboutTarget
= getClaimsAboutTarget( "CleanWords", idTarget );

float totalReputation = calculateTotalReputation (
idTarget );
double currentTime = (double) Calendar. getlnstance ().

getTime () .getTime () ;
float targetReputation = 0.0f;
for ( ReputationStatementInfo rs
allStatementsAboutTarget )

{
String source = rs.getSource();
float sourceReputation = Float.valueOf(
getLastReputation (source) );
float credibility = sourceReputation /
totalReputation;
targetReputation += Float.valueOf( rs.getClaim().
getValue () ) * credibility * Double.valueOf( rs.
getTimeStamp () ) / currentTime;
}

return targetReputation;

}

private float calculateTotalReputation( String idTarget )
{
List<ReputationStatementInfo> allStatementsAboutTarget
= getClaimsAboutTarget( "CleanWords", idTarget );
Set<String> consideredEntities = new HashSet();
float totalRep = 0.0f;
for ( ReputationStatementInfo rs
allStatementsAboutTarget )

{
String sourceEntity = rs.getSource ();
String sourceReputationString = getLastReputation (
sourceEntity );
float sourceReputation = Float.valueOf(
getLastReputation( sourceEntity ) );
consideredEntities .add( sourceEntity );
totalRep += sourceReputation;
}

float targetReputation = Float.valueOf( getLastReputation
( idTarget ) );
totalRep += targetReputation;
return totalRep;

26




7.4 REGRET

REGRET [27]] is a reputation model that considers three reputation values, one for each
considered dimension: an individual dimension, a social dimension and an ontological
dimension. The three reputation values are calculated from a set of impressions gath-
ered by the entities. These impressions are about a subject and a target, and map to
what we call claims.

The individual dimension calculates a so-called subjective reputation value by us-
ing impressions of the agent about the target agent, as follows:

Ra—)b(SUbjeCt) = E p(ta tl) : Wi

where a is the source entity, b is the target entity, W; is the claim value in the range
[—1,1], and p is a function that gives recent impressions a higher weight.

For the social dimension, the model considers that agents belong to groups, denoted
by A, B, etc, and calculate the reputation at the group level, considering the impressions
about each agent of the group. In particular, the model considers:

Ra—p(subject) = EbiEB w - Rqyp, (subject)
Rasp(subject) =5, c qw - Ro,—p(subject)
Rap(subject) =3, c qw - Ra,—p(subject)

where w are weights that must sum up 1. The final reputation value consists of a
weighted sum of all the previous values.

The model also considers an ontological dimension, where a subject (or context)
might be decomposed into other subjects, which allows generalizing a reputation value
for a new subject from weighting the contributing existing subjects.

In order to implement this model in our framework, we make some slight simplifi-
cations. The most important one is that we do not consider the ontological dimension,
because contexts relationships are not supported in the framework. Also, in order to
simplify calculations and show a more clear code, we assume a uniform distribution of
weights across impressions and we do not consider reliability of the reputation values.

The coarse-grained steps for the implementation are the following:

e Inheriting from DistKevReputableEntity, invoking the method makeClaim upon
receiving a message, which simulates the impressions.

e Set the group to which each entity belongs.

o The reputation engine must retrieve the impressions of all entities to compute the
different reputation values, and the groups to which each entity belongs.

The code for the consoles is the same as the one depicted in Listing [6] except
that we bind another reputation engine in the starf() method. The reputation engine
implements the formula explained earlier, as shown in Listing|[§]

27



Listing 8: Binding Reputation Engine and Console

public class RegretReputationModel extends ReputationEngine<
Float>
{
@Override
public Float compute(String context, String idTarget,
String idSource) {

//1) Calculate subjective reputation

List<ReputationStatementInfo > claims = getClaims (
CleanWords", idSource, idTarget );

float subjectiveReputation = 0.0f;

float totalClaims = claims.size () ;

double currentTime = (double) Calendar. getlnstance ().
getTime () . getTime () ;

for ( ReputationStatementInfo rs : claims )

{

float claimVal = Float.valueOf( rs.getClaim ().
getValue () );

double claimTimeStamp = (double) rs.getTimeStamp () ;

subjectiveReputation += (claimVal / totalClaims) x
(claimTimeStamp / currentTime);

}

//2) Now, retrieve all the claims that idSource made
about any entity in the same group as idTarget

String groupTarget = getParam( idTarget, "group" );

List<ReputationStatementInfo > targetGroupClaims =

getClaimsFromSource ("CleanWords", idSource);

float targetGroupReputation = 0.0f;

currentTime = Calendar. getlnstance ().getTime () .getTime
03

for ( ReputationStatementInfo rs: targetGroupClaims )
{
//We don’t want to consider claims about the target
itself
if ( !idTarget.equals( rs.getTarget() ))
{
String g = getParam(rs. getTarget(), "group");
if (groupTarget.equals(g)) {
float claimVal = Float.valueOf(rs.getClaim
().getValue());
double claimTimeStamp = (double) rs.
getTimeStamp () ;
targetGroupReputation += (claimVal /
totalClaims) * (claimTimeStamp /
currentTime) ;

28




}

//3) Now, retrieve all the claims that any entity in
the same group as idSource made about idTarget
String groupSource = getParam( idSource, "group" );
List<ReputationStatementInfo > sourceGroupClaims =
getClaimsAboutTarget( "CleanWords", idTarget );
float sourceGroupReputation = 0.0f;

currentTime = Calendar. getlnstance ().getTime ().getTime
(O

for ( ReputationStatementInfo rs : sourceGroupClaims )

{

//We don’t want to consider claims from the source
itself
if ( !idSource.equals( rs.getSource() ))
{
String g = getParam(rs.getSource (), "group");
if (groupSource.equals(g)) {
float claimVal = Float.valueOf( rs.getClaim
().getValue () );
double claimTimeStamp = (double) rs.
getTimeStamp () ;
sourceGroupReputation += (claimVal /
totalClaims) * (claimTimeStamp /
currentTime) ;

}

return new Float( subjectiveReputation +
targetGroupReputation + sourceGroupReputation );

8 Discussion

This section describes the experiment that we carry out in order to measure the perfor-
mance overhead that the framework entails, as well as the amount of work that devel-
opers need to invest during the implementation of the models. We also enumerate some
shortcomings and technical challenges that we faced and that need to be overcome to
obtain the most out of a trust-aware and self-adaptive framework.

8.1 Experimental Results

We design an experiment to measure the performance overhead of the trust framework
and the reconfiguration mechanism. The application used for the experiment is the one
explained in Section[7] In order to ignore network latency, both consoles are executed

29




on the same platform, which is a 2010 Macbook Pro Intel Core 2 Duo, with 4GB 1067
MHz DDR3 RAM.

The experiment is as follows. First, we measure the time elapsed between the
time the first console sends a message and the second console shows it, without any
trust or reputation involved. Then, for each trust or reputation model considered in
Section[7} we measure this same time. In order to account for the computation engines,
the receiver console shows the text only after it has received an update of the sender
console trust or reputation. Each measure is actually an average of 100 individual
measures to provide more statistically meaningful results, which are depicted in Fig.[5]
We can observe that there is a small overhead when using the framewok, although this
overhead comes in terms of micro-seconds. The least overhead comes from Marsh’s
model, whereas the greatest comes from REGRET, something expected given its more
complex computation engine.

PeerTrust

Regret

Marsh's
Ebay
I ———

No Trust

0 500 1000 1500 2000 2500 3000 3500
Figure 5: Execution Time (measured in microseconds)

The amount of work that takes for developers to implement the models is similar
for all the models, as shown in Table[2]

Table 2: Amount of Framework-related Activities

eBay | Marsh’s | PeerTrust | REGRET
#inheritance 2 2 2 2
#invocations 3 4 4 6
#overriding 2 3 2 2
#configFiles 1 2 1 1
#compDeployed 3 3 2 2

As explained in Section [/| each model requires inheriting from two framework
classes, the class that determines the type of the entity, and the class that implements
the model or the engine. The number of method invocations go hand in hand with
the complexity of the model. Thus, REGRET requires up to 6 method calls whereas
eBay only requires 3. The number of methods that need to be overridden is similar in
all the models, although it is higher in Marh’s model because it needs to implement

30



the threshold value. All models require at least one configuration file with the self-
adaptation policy, whereas Marh’s require another one for setting the initial subjective
factors of the entities. The deployment changes slightly, as in the case of centralized
models (like Marsh’s and centralized reputation models like eBay’s), three components
must be deployed, whereas in distributed reputation models only two are require

As a conclusion, the framework entails negligible overhead (in the order of micro-
seconds) and does not require a lot of work to implement well-known, existing models.
This means that the benefits of adopting the framework are quite high considering the
work that the implementation requires (see Table[2)) or even in terms of execution time,
as shown in Fig. [5] We advocate that these results make the adoption of the framework
appealing.

8.2 Challenges

We have learned that this kind of integration must overcome several challenges. In our
view, one primary challenge is building a robust identity management system in order
to uniquely identify trust and reputation entities, and to allow access at any moment
to these identities. In our current implementation, we build upon the reflection layer
of Kevoree so as to provide such identities. However, it would be desirable to keep
track of entities that disappear and re-appear again in dynamic environments, which is
something we do not tackle at the moment.

Second, more research on declarative reconfiguration policies is required. Cur-
rent models@run.time platforms lack a usable mechanism to specify reconfiguration
policies. Kevoree provides Kevscript instructions, which become cumbersome for ad-
vanced reconfigurations. We have provided a basic format to represent these policies,
but it may fall short of expressiveness as the complexity of scenarios increases.

We also find that models @run.time platforms should provide a great deal of usable
low-level services in order to monitor certain aspects of the system, like the consumed
resources by each component, the latency of communications, or the response times,
because this information might be key to building robust trust and reputation models.
Factor producer entities could use these services to monitor different aspects of the
entities and feed the trust or reputation engine.

9 Conclusion and Future Work

In this paper we have developed a trust and reputation framework that allows imple-
menting a wide range of trust and reputation models. The framework has been im-
plemented on the top of a self-adaptive platform, which enables the use of trust and
reputation information in order to make reconfiguration decisions. We have shown that
the framework barely entails overhead and that the small amount of extra work for
developers pays off given the interesting opportunities brought by the framework.
Despite the huge amount of trust and reputation models proposed in the literature,
we have found that by using only some core concepts (embodied in trust and reputation

131n practice, three components should be deployed in order to test the reputation engines of PeerTrust
and REGRET due to their consideration for groups and credibility.

31



metamodels), it is possible to represent a wide range of them. This happens because the
differences among models are often due to the application context where the models
are proposed, rather than in their dynamics, which turn out to be similar in most cases.

As future work, we intend to address the following issues. First, an empirical
validation of the framework usability is required. In particular, we intend to observe
other developers while they implement different trust and reputation models. In this
same direction, we are interested in improving the usability of the API by supporting
the configuration-based (e.g. XML) development of trust and reputation models, by
reducing the amount of code that developers must write and providing a higher-level
interface to the trust and reputation management. We also plan to test the framework
in a more elaborated scenario concerning smart grids, where multiple heterogeneous
entities interact. Finally, we would like to address other types of trust models, like
propagation models, where new trust relationships are derived from existing ones by
exploiting trust transitivity.

Acknowledgements

This work has been partially supported by the European Training Network NeCS (H2020-
MSCA-ITN-2015- 675320) and by the Spanish Ministry of Economy and Competi-
tiveness through the project PERSIST (TIN2013-41739-R). The second author is sup-
ported by the Ministery of Economy of Spain through the Young Researchers Pro-
gramme: project PRECISE (TIN2014-54427-JIN).

The authors wish to thank Benoit Baudry, Jean-Emile Dartois, Erwan Daubert and
Francois Fouquet for their invaluable feedback and support during this research.

References

[1] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Com-
puter, 42(10):22-27, 2009.

[2] William Conner, Arun Iyengar, Thomas Mikalsen, Isabelle Rouvellou, and Klara
Nahrstedt. A trust management framework for service-oriented environments. In
Proceedings of the 18th international conference on World wide web, WWW ’09,
pages 891-900, New York, USA, 2009. ACM.

[3] C Crapanzano, F Milazzo, A De Paola, and G.L Re. Reputation Management for
Distributed Service-Oriented Architectures. In Proceedings of the Fourth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems Work-
shop (SASOW’10), pages 160-165, 2010.

[4] Randy Farmer and Bryce Glass. Building Web Reputation Systems. Yahoo! Press,
USA, Ist edition, 2010.

[5] Frangois Fouquet, Olivier Barais, Noé€l Plouzeau, Jean-Marc Jézéquel, Brice
Morin, and Franck Fleurey. A Dynamic Component Model for Cyber Physical
Systems. In Proceedings of the 15th International ACM SIGSOFT Symposium on

32



Component Based Software Engineering, pages 135—144, Bertinoro, Italie, July
2012.

[6] John C. Georgas, André van der Hoek, and Richard N. Taylor. Architectural Run-
time Configuration Management in Support of Dependable Self-adaptive Soft-
ware. SIGSOFT Software Engineering Notes, 30(4):1-6, May 2005.

[7] Carlo Ghezzi. The Fading Boundary between Development Time and Run
Time. In Proceedings of the Ninth IEEE European Conference on Web Services
(ECOWS’11), page 11, Sep 2011.

[8] Haouas Hanen and Johann Bourcier. Dependability-Driven Runtime Manage-
ment of Service Oriented Architectures. In 4th International Workshop on Princi-
ples of Engineering Service-Oriented Systems (PESOS’12), pages 15-21, Zurich,
Switzerland, June 2012.

[9] P. Herrmann and H. Krumm. Trust-adapted enforcement of security policies in
distributed component-structured applications. In Proceedings of the 6th IEEE
Symposium on Computers and Communications, pages 2—8, 2001.

[10] Peter Herrmann. Trust Management: First International Conference on Trust
Management (iTrust’03), volume 2692 of LNCS, chapter Trust-Based Protection
of Software Component Users and Designers, pages 75-90. Springer Berlin Hei-
delberg, May 2013.

[11] Audun Jgsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618-644,
March 2007.

[12] Rolf Kiefhaber, Florian Siefert, Gerrit Anders, Theo Ungerer, and Wolfgang Reif.
The Trust-Enabling Middleware: Introduction and Application. Technical report,
Institut fiir Informatik Universitdt Augsburg, March 2011.

[13] L. Klejnowski, Y. Bernard, J. Hdahner, and C. Miiller-Schloer. An Architecture for
Trust-Adaptive Agents. In Proceedings of the 4th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO’10), pages 178—183. IEEE,
2010.

[14] L. Luca, D. Pierpaolo, B. Riccardo, B. Stephen, and B. Andrew. Enabling Adap-
tation in Trust Computations. In ComputationWorld *09: Future Computing, Ser-

vice Computation, Cognitive, Adaptive, Content, Patterns, pages 701-706. IEEE,
2009.

[15] Stephen Marsh. Formalising Trust as a Computational Concept. PhD thesis,
University of Stirling, April 1994.

[16] Matt Blaze and Joan Feigenbaum and Jack Lacy. Decentralized Trust Manage-
ment. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pages 164—173. IEEE Computer Society Press, 1996.

33



(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

Francisco Moyano, Benoit Baudry, and Javier Lopez. Towards trust-aware and
self-adaptive systems. In Carmen Fernandez-Gago, Isaac Agudo, Fabio Mar-
tinelli, and Siani Pearson, editors, Proceedings of the 7th IFIP WG 11.11 Inter-
national Conference on Trust Management (IFIPTM’13), volume 401 of AICT,
pages 255-262, Malaga, Jun 2013. Springer, Springer.

Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez. A conceptual
framework for trust models. In Simone Fischer-Hiibner, Sokratis Katsikas, and
Gerald Quirchmayr, editors, Proceedings of the 9th International Conference on
Trust, Privacy & Security in Digital Business (TrustBus’12), volume 7449 of Lec-
tures Notes in Computer Science, pages 93—104, Vienna, Sep 2012. Springer Ver-
lag.

Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez. A framework for
enabling trust requirements in social cloud applications. Requirements Engineer-
ing, 18:321-341, Nov 2013.

S. Phoomvuthisarn, Yan Liu, and Jun Han. An Architectural Approach to Com-
posing Reputation-Based Trustworthy Services. In Proceedings of the 21st Aus-
tralian Software Engineering Conference (ASWEC’10), pages 117-126, 2010.

Harald Psaier, Lukasz Juszczyk, Florian Skopik, Daniel Schall, and Schahram
Dustdar. Runtime Behavior Monitoring and Self-Adaptation in Service-Oriented
Systems. In Proceedings of the IEEE 7th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO’13), volume 0, pages 164—173, Los
Alamitos, CA, USA, 2013. IEEE Computer Society.

Sarvapali D Ramchurn, Dong Huynh, and Nicholas R Jennings. Trust in multi-
agent systems. The Knowledge Engineering Review, 19(01):1-25, April 2005.

Lars Rasmusson and Sverker Jansson. Simulated social control for secure internet
commerce. In Proceedings of the 1996 workshop on New security paradigms,
NSPW 96, pages 18-25, New York, NY, USA, 1996. ACM.

Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lockwood. The
value of reputation on ebay: A controlled experiment. Experimental Economics,
9(2):79-101, Jun 2006.

Paul Robertson and Robert Laddaga. Adaptive Security and Trust. In Proceedings
of the 6th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO’12), pages 55-60. IEEE Computer Society, 2012.

Paul Robertson, Robert Laddaga, and Mark H. Burstein. Trust and Adaptation in
STRATUS. In Proceedings of the 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (IEEE TrustCom’13),
pages 1711-1716. IEEE, 2013.

Jordi Sabater and Carles Sierra. REGRET: Reputation in Gregarious Societies.
In Proceedings of the Fifth International Conference on Autonomous Agents,
AGENTS ’01, pages 194-195, New York, NY, USA, 2001. ACM.

34



(28]

[29]

(30]

(31]

(32]

A

Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2), Feb
2006.

Quang-Anh Nguyen Vu, Salima Hassas, Frederic Armetta, Benoit Gaudou, and
Richard Canal. Combining Trust and Self-Organization for Robust Maintain-
ing of Information Coherence in Disturbed MAS. In Proceedings of the Fifth
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO’11), pages 178-187. IEEE, 2011.

Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-
to-Peer Electronic Communities. [EEE Transactions on Knowledge and Data
Engineering, 16(7):843-857, July 2004.

Zheng Yan and C. Prehofer. Autonomic Trust Management for a Component-
Based Software System. IEEE Transactions on Dependable and Secure Comput-
ing, 8(6):810-823, 2011.

Zheng Yan, Peng Zhang, and Teemupekka Virtanen. Trust evaluation based secu-
rity solution in ad hoc networks. In Proceedings of the Seventh Nordic Workshop
on Secure IT Systems, (NordSec’03), October 2003.

Implementation Listings

Listing 9: TrustEntity Component

@ComponentType
public class TrustEntity <T, F>

{

@Param(defaultValue = "both")
private String role;

@Param(defaultValue = "MyContext")
private String trustContext;

@Param(defaultValue = "MyGroup")
private String group;

@Param(defaultValue = "0")
private String bootstrappingTrustValue;

@Param
private String subjectiveFactorsFilePath;

@Output
private Port requestTrustUpdate;

@Output
private Port initTrustRelationships;

35




@Output
private Port addFactor;

@Kevoreelnject
private Context context;

private String uid;

@Start

protected final void start ()

{
uid = context.getlnstanceName () + "@" + context.

getNodeName () ;
initTrustRelationships.send(trustContext +
"." + bootstrappingTrustValue);

storeSubjectiveFactors () ;

non

+ uid +

Listing 10: Initialization of Trust Entities in Trust Model Component

@ComponentType
public class TrustModel<T,F> implements IComputationEngine

{

@Input
protected final void initializeTrustRelationships( Object
request )
{
StringTokenizer st = new StringTokenizer( request.
toString (), "." )
String context = st.nextToken();

String idTrustor = st.nextToken():;
String bootstrappingTrustValue = st.nextToken ()

HashMap<String , List<String>> trustees =
GetHelper. getTrusteesInstanceName (model.
getCurrentModel () . getModel () , context,
idTrustor );
List<String > idTrustee = new ArrayList<String >();

for (String nodeName: trustees.keySet()) f{
for ( String compName : trustees.get( nodeName ))

{

idTrustee .add( compName + "@" + nodeName );

}
}

for (String t : idTrustee) {
long ts = Calendar. getlnstance ().getTime () .getTime

36




0
addTrustRelationship( context, idTrustor, t,
bootstrappingTrustValue , ts );

}

public T compute(String context, String idTrustee, String
idTrustor)
{

return null;

}

Listing 11: Using the EMF API to add Trust Relationships

private void addTrustRelationship( String context, String

idTrustor , String idTrustee , String initialValue , long
timeStamp )

Trustee trustee = trustModel.findTrusteesByID( idTrustee );
if ( trustee == null )
{
trustee = factory.createTrustee ()
trustee .setldTrustee ( idTrustee );
trustModel . addTrustees ( trustee );

}

// Creation of the rest of trust relationships elements

Listing 12: TrustModel

private void addTrustRelationship( String context, String

idTrustor , String idTrustee , String initialValue , long
timeStamp )

protected final String getFactorValue(String context, String
name, String uidTarget)

{
for ( Factor f : trustModel.getFactors() )
{
if (context.equals(f.getContext()) &&
name. equals (f.getName () ) &&
uidTarget.equals(f.getldTarget()))
{
return f.getValue().getValue();
}
}

37




return null;

}

public T compute(String context, String idTrustee, String
idTrustor)

{

return null;

}

protected T computeThreshold(String context, String
idTrustee , String idTrustor)

{

return null;

}

Listing 13: CentralReputableEntity Component

@ComponentType
public class CentralReputableEntity <T> implements IClaimSource

{

@Param(defaultValue = "MyContext")
private String trustContext;

@Param(defaultValue = "MyGroup")
private String group;

@Output
private Port sendClaim;

@Output
private Port requestReputation;

private String uid;

protected void reputationReceived( String target, T newVal

) {1}

Listing 14: ReputationManager Component

@ComponentType
public class ReputationManager<T> implements IComputationEngine

{
/7.

protected final List<String> getClaimsValues( String context

, String name, String target ) {
List<String > claims = new ArrayList<String >();

38




for (ReputationStatement rs : repRoot.getStatements())
{
if (rs.getContext().equals( context ) && rs.
getTarget (). getldTarget () .equals( target ))
{
for (Claim claim : rs.getClaim())
{
if (claim.getName () . equals (name))
{
claims.add( claim.getClaimValue () .
getValue () );

}
}

return claims;

}

public T compute( String context, String idTarget, String
idSource )

{

return null;

}

/7.

Listing 15: DistReputableEntity Component and Reputation Engine Initialization

public class DistReputableEntity <T> implements [IClaimSource {

@Param(defaultValue = "MyContext")
private String trustContext;

@Param(defaultValue = "MyValue")
private String group;

@Kevoreelnject
private Context ctx;

@Output
private Port requestClaim;

private String uid;
private ReputationEngine <T> reputationEngine;

@Start
public void start( ReputationEngine repEngine )

{

uid = ctx.getlnstanceName () + "@" + ctx.getNodeName() ;

39




reputationEngine = repEngine;

/7

/7.

Listing 16: ReputationEngine Class

protected final List<ReputationStatementInfo >
getClaimsFromSource (String name, String idSource)
{
List<ReputationStatementInfo> claims=new ArrayList();
for ( ReputationStatementInfo cInfo
reputationStatements )

{
if ( name.equals(cInfo.getClaim () .getName()) &&
cInfo.getSource ().equals( idSource ))
{
claims.add( cInfo );
}
1
return claims;
}
Listing 17: Reconfiguration Rules Processing
@ComponentType

public class DistReputableEntity <T> implements IClaimSource {

@Start

public void start( ReputationEngine repEngine, String
fileName )

{
se = new ScriptEngine ( model );
rre = new ReputationRulesEngine( fileName, se );

}

private void computeReputation( String idTarget, boolean
reconfigure , List<ReputationStatementInfo> rsInfo )

{

T res = reputationEngine.compute( model, trustContext ,
idTarget , uid, rsInfo, this );

if ( reconfigure )

{
rre .executeRules ( model, idTarget, res.toString() )

b}

40




/7

Listing 18: ScriptEngine: Remove Component

private void removeComponent( String idComponent )

{

StringTokenizer st =

String instance = st.nextToken();
String node = st.nextToken();

new StringTokenizer( idComponent,

String script = "remove_" 4+ node + "." + instance;
model. submitScript(script , new UpdateCallback () {
@Override

public void run(Boolean applied) {

}
1)

"@"

)

41




	Introduction
	Related Work
	Kevoree: A Models@run.time Development Platform
	Kevoree Development Framework
	Deployment in Kevoree

	Trust and Reputation Concepts
	Evaluation Models Concepts
	Reputation Concepts

	Integrating Trust and Reputation in Models@Run.time
	Trust and Reputation Metamodels
	Trust Framework
	Reputation Framework

	Trust-based Self-Adaptation
	Policy-based Reconfiguration
	Implementation

	Application Example: A Trust-Aware Distributed Chat
	eBay Model
	Marsh's Trust Model
	PeerTrust
	REGRET

	Discussion
	Experimental Results
	Challenges

	Conclusion and Future Work
	Implementation Listings

