
Protocol Engineering Applied to                                                              
Formal Analysis of Security Systems 

Abstract. Every communication system requiring security properties is certainly critical. In order to 
study the security of communication systems, we have developed a methodology for the application 
of the formal analysis techniques of communication protocols to the analysis of cryptographic ones. 
We have extended the design and analysis phases with security properties. Our methodology uses a 
specification technique based on the HMSC/MSC requirement languages, and translates it into a 
generic schema for the SDL specification language that it is analyzed. Thus, the technique allows the 
specification of security protocols using a standard formal language and uses Object-Orientation for 
reusability purposes. The final goal is not only the formal specification of a security system, but to 
examine the possible attacks, and later use it in more complex systems. 

1.   INTRODUCTION  

Nowadays, it is widely accepted that critical systems have to be analyzed formally in order to 
achieve well-known formal method benefits [Holz91]. These methods characterize the behavior 
of a system in a precise way and can verify its formal specification. Design and analysis of 
security systems must benefit from advantages of formal methods because of the evident 
criticality of such type of systems. 
 During last years, the cryptographic protocol analysis research area [Mead00] has seen an 
explosive growth, with numerous formalisms being developed. We can divide that research into 
three main categories: logic-based [BAN89], model checking [MCJ97][MMS97][Alur et al. 98] 
and theorem proving [DeMi99]. Only recently there has been a tendency to try to combine 
them. 
 We believe that the results obtained in the analysis phase of cryptographic protocol have a 
direct application on the design phase of a secure communication system. The reason is that 
there is no strong relation between security analysis tools and formal methods techniques of 
communication protocols. 
 Therefore, we have developed a new methodology to specify secure systems and to check 
that they are not vulnerable using well-known attacks. Our approach uses a requirement 
language to describe security protocols, as well as a generic formal language, together with its 
associate verification methods and tools. In our method a simple and powerful intruder process 
is explicitly added to the specification, so that the verification of the security properties 
guarantees the robustness of the protocol against attacks of such an intruder. The intruder 
controls the transmission medium and can perform the attacks [DoYa83]. His possible actions 
are killing, sniffing, intercepting, redirect, delaying, delivering, reordering, replaying, and 
faking. 
 Actually, secrecy and authentication [RySc01] are the security properties more widely 
analyzed. By analyzing secrecy we prevent the intruder from being able to derive the plaintext 
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of messages passing between honest nodes. Our analysis consists of checking if the secret item 
can be deduced from the protocol messages and the intruder’s database knowledge. 
 For an authentication protocol to be correct, it is required that a user Bob do not finish the 
protocol believing that has been running with a user Alice unless Alice also believes that she has 
been running the protocol with Bob. Our analysis consists of checking if there is a reachable 
state where Alice has finished correctly and Bob has not reached his final state. 
 The paper is structured in the following way. In section 2 we summarize SDL features and 
tools. In section 3 we explain how SDL can be used to specify security protocols and 
cryptographic operations. At the same time we show how security protocols can be modeled as 
safety properties and checked automatically by a model-based verification tool. Section 4 shows 
an example of how our methodology is applied to EKE protocol. Last section contains 
conclusions and future work. 

2.   SDL LANGUAGE 

 Specification and Description Language (SDL) [ITU99a] is a standard language for 
specifying and describing systems. It has been developed and standardized by ITU-T in the 
recommendation Z.100. An SDL specification/design (a system) consists of a number of 
interconnected modules (blocks). A block can recursively be divided into more blocks forming a 
hierarchy of blocks. The channels define the communication paths through which the blocks 
communicate with each other or with the environment. Each channel usually contains an 
unbounded FIFO queue that contains the signals that are transported on it. One or more 
communicating processes describe the behavior of the leaf blocks, and extended finite state 
machines describe the processes.  
 In addition, SDL supports object-oriented design [SEH97] by a type concept that allows 
specialization and inheritance to be used for most of the SDL concepts, like blocks, processes, 
data types, etc. The obvious advantage is the possibility to design compact systems and to reuse 
components, which in turn reduces the required effort to maintain a system. SDL has adopted 
the term “type”, which corresponds to the term “class” used in many of the object-oriented 
notations and programming languages. 
 Telelogic's Tau SDL Suite provides an environment for developing SDL systems and 
implementations. The SDL Suite comprises a set of highly integrated tools that automate the 
transition from specification to real-time execution. With SDL’s graphical language, SDL Suite 
describes, analyses, simulates, and supports generations of C/C++ applications. Thus SDL Suite 
simplifies testing and verifying the application by virtue of the formal semantics of the SDL 
language that makes tool support in early phases possible. The engineer composes diagrams, 
supported by a formal, well-defined graphical syntax that defines the program functionality, 
eliminating the need to manually write whole sections of code. We use SDL Validator tool for 
verification purpose. Indeed, we are going to take advantage of its exploration algorithms and its 
check mechanism.  



2.1   SDL Validator 

The SDL Validator [Hogr96] is based on state space exploration. State space exploration is 
based on automatic generation of reachable states of systems. Reachable state space means all 
possible states an application can find itself, and all possible ways it can be executed. A 
reachability graph is one way to conceptually view reachable state space, though one rarely 
computes it since it is too large for realistic applications. 
 In addition, a reachability graph represents the complete behavior of an application. The 
nodes of the graph represent SDL system states, and it contains all necessary information to 
describe the application state. For an SDL system, the complete description of the application 
states includes: the flow state of all concurrent processes, the value of all the variables, 
procedure call stacks, activated timers, signals in transmission and their parameter values, and 
so on. 
 The edges of the reachability graph represent SDL events that can take the SDL system 
from one system state to the next system state. The edges define the atomic events of the SDL 
system. These can be SDL statements like assignments, inputs and outputs, or complete SDL 
transitions depending on how the state space exploration is configured. 

2.2   Exploration Algorithms  

The state space can be explored using following algorithms: random walks, exhaustive 
exploration, bit-state exploration, and interactive simulation. The random walk algorithm 
randomly traverses the state space. Each time several possible transitions are available, the SDL 
Validator chooses one of them and executes it. The random walk algorithm is useful as an initial 
attempt for robustness testing of an application and when the state space is too large even for a 
partitioned bit state search. 
 The exhaustive exploration algorithm is a straightforward search through the reachability 
graph. Each system state encountered is stored in RAM. Whenever a new system state is 
generated, the algorithm compares it with previous generated states to check if the new one was 
reached already during the search. If it was, the search continues with the following to this state. 
If the new state is the same as a previously generated state in RAM, the current path is prune, 
and the search backs up to try more alternatives. The exhaustive exploration algorithm requires 
a lot of RAM, which limits its practical application.  
 The algorithm called bit state exploration can be used to efficiently validate reasonably 
large SDL systems. It uses a data structure called “hash table” to represent the system states that 
are generated during the exploration. When we want to analyze a particular situation, we use the 
interactive simulation. We guide state exploration to the goal scenario, and then we check for 
analysis results.  



2.3   Checking Method 

The Validator has several ways to check SDL specification. These are essentially scenario 
verification and observer process. In order to obtain scenario specifications we use the Message 
Sequence Chart (MSC) [ITU99b] language (Recommendation ITU-T Z.120). We can verify a 
MSC, checking if there is a possible execution path for the SDL system that satisfies the MSC, 
or checking MSC violation. Loading MSC and performing a state space exploration set up in a 
way suitable for verifying MSCs does this. The MSC verification algorithm is a bit state 
exploration that is adapted to suit the needs of MSC verification.  
 The more powerful way to check a SDL specification is the observer process mechanism. 
The purpose of an observer process is to make it possible to check more complex requirements 
on the SDL system than can be expressed using MSCs. The basic idea is to use SDL processes 
(called “observer processes”) to describe the requirements that are to be tested and then include 
these processes in the SDL system. Typical application areas include feature interaction analysis 
and safety-critical systems.  
 By defining processes to be observer processes, the Validator will start to execute in a two-
step fashion. First, the rest of the SDL system will execute one transition, and then all observer 
processes will execute one transition and check the new system state.  
The assert mechanism enables the observer processes to generate reports during state space 
exploration. These reports will show up in the list of generated reports in the Report Viewer.  

3.   ANALYSIS MECHANISM 

Our approach (figure 1) performs the design and analysis of a security protocol in the same way 
that we do it with a traditional communication protocol. Firstly, we define system requirements. 
These are specified in the Security Requirements Specification Language (SRSL), which has 
been designing to define the security features and analysis strategy. Following, we translate the 
system requirements into an SDL system in a semi-automatically manner, and we analyze it. 
Beside, It could be applied for code generation and testing. 
 The aim of the SRSL is to define a high level language in order to specify cryptographic 
protocols and secure systems. This language must be modular to achieve reusability, easy to 
learn, and have to use security concepts. The SRSL is divided into three parts; the first one is the 
specification of protocol elements, the second is message exchange flow, and the third is 
security analysis strategies. 
 The essential elements required to define a security protocol can be divided into several 
categories. These are explained as follows (keywords in cursive): 

- Entities: Agent (Initiator/Responder), principal identification; Server_Key, provide a 
key; Server_Time, provide time token; Notary, register the transaction; Server 
Certification Authority (SCA), validate a certificate. 

- Message: Text, clear text; Random Number, for freshness purposes; Timestamp, actual 
time; Sequence, count number. 



-  Keys: Public_key, for instance, PKCS#12 format; Certificate, public key signed by 
CA; Private_key, used to sign; Shared_key, secret key shared by more than one entity; 
Session_key, it is a secret key used to encrypt a transmission. 

 
 In addition, SRSL may operate with data type previously defined. Those oper-ations are: 
Concatenate, compose complex data (operator ’,’), it can be identified as a name; 
Cipher/Decipher, provide a cipher data and clear data respectively (for instance, 
RSAcipher/RSADecipher PKCS#1 format); Hash, a one-way algorithm re-sult; Sign, message 
hash encrypted with signer’s private key (for instance, RSAsign PKCS#7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Methodology structure 

 The message exchange is defined in the most widely requirements language utilized in 
telecommunications area, the Message Sequence Chart (MSC) and its extension High MSC 
(HMSC). We can specify elementary scenarios (MSC) and compose them into a complex 
protocol (HMSC). 
 We may describe security systems in multilayer way. The first layer is communication 
medium, besides it is used to apply attack strategy (intrude behavior). The other layers depend 
on security mechanisms employed in system development. 
 For instance, we consider a system that uses SSL security mechanism to achieve server 
authentication and secret communication. Although, we want to be able to send the credit card 
number and the product code data, and to achieve evidence in order to provide non-repudiation 
of origin.  
 The specification is described as follows: 
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Figure 2:  Modules Schema of security system specification 

 The SSL layer can be described in a standard security communications package. Therefore, 
part of Medium layer is generated automatically. Consequently, we only have to specify the 
Initiatior-Responder protocol. It is composed by simple scenarios described in MSC: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  MSC description of User Protocol 

 The security analysis section describes at least the check property. This is called "check" 
and it has three possible conditions: Authentication(A,B), for analyzing the authentication 
between agents A and B; secret(X), to evaluate if X can be deduced (also called confidentiality); 
Nonrepudiation(A,X), check if data X ( the evidence ) can be produced only by A. Therefore, it 
is possible to define a specific attack scenario using "session_instance" and "intruder_behavior" 
sections, in order to refine the exploration space. 
 An Automatic translator program is used to achieve the SDL system from SRSL. The SDL 
system is composed by a package where data types are defined, and other package where one 
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type process for each protocol agent, and a group of type process observer and process medium 
are specified. 
 In order to analyze security properties, we evaluate the SDL system behavior when 
different kinds of attacks are applied for medium processes. Observer processes check if a 
determinate situation is searched and in that case result an inform report. This report 
corresponds on a failure scenario.  
 The analyzer creates the medium and observer processes for any kind of vulnerability that 
we want to examine. We have implemented generic process medium and observers, but they 
must be extended depending on system environment. A more detailed description of every part 
of SDL system is explained following.  

3.1   Data Types Package 

The messages, which are sent by protocol agents, are constructed by a concatenation of 
elemental data types and cryptographic operations. These data types can be divided in agent 
identification, number (random, time-stamping, etc…), symmetric key and asymmetric key pair. 
Thus, the operations used are cipher, decipher, sign and hash function.  
 To be more precise, we speak about certificate but not public key, although for analysis 
purposes it is accepted to use this simplification. Of course, for code generation we need to use 
the ASN.1 notation, because this obtains an unambiguous data management.  
 The package “analcryptlib” defines data type used by SDL specification. The SDL data 
types do not ort recursive definition, so we make use of enumerated and structured data types. 
The elemental data types defined are: (a) agent Identification, it is an enumerated sort with all 
possible agents name; (b) number, it is a fresh and/or random value; (c) Secret key, this 
represents symmetric key; (d) public key, this is composed by a key pair (private and public 
key); (e) encrypted message, that it is implemented with a structured sort composed by item 
message and item symmetric or asymmetric cipher; (f) signed message, it is defined as a 
structure sort with a message and the private key signer. 
 Freshness or temporary secrets are implemented appending an item that has the process 
instance values. The SDL sort PID allows doing it. Furthermore, we define a type set of 
knowledge for each data type. Intruder utilizes these types to store message knowledge.  

3.2   Agents Package  

The generic model identifies each protocol agent with a process type SDL. All process types are 
stored in a package in order to be used in other specifications. An agent specification is 
absolutely independent of the rest of the system, so they are generated in separated modules. 
Furthermore, this specification permits concurrent instance so that we can evaluate this behavior 
in the analysis stage.  
 The generic state transition of process agent is triggered when it receives a message and it 
is correct. Then, the next message is composed to be sent to the receiver agent or it will stop if it 



is the final state of this protocol. If the message is not correct, it will return to waiting message 
state. 
 The process in SDL is a finite state machine, so it finishes when execute a stop statement or 
provides a deadlock if no signal arrives. Our model has to explore all possibilities; thus, we need 
to develop a mechanism to ensure that all signals sent must be processed. Consequently, we 
have appended a state called “final” to notice the end of the protocol execution, and a general 
transition composed on a common “save” statement and a continuous signal, with less priority 
than the input statement, that check if there are some signal waiting for dealing out. By means 
of this structure we transform a finite state machine in an infinite one, only for analyzing 
purposes. 
 At this point, we have specified a security protocol in the same way that we might specify a 
traditional communication protocols, therefore we can examine the classical liveness properties. 
The specification must be well formed, but it is not the main aim of a secure system. In the next 
subsection, we are going to explain how to check the security properties. 

3.3   Model Medium-Observer Processes 

The intruder's behavior is divided into two aspects, exploration algorithm and check 
mechanism. The exploration algorithm is provided by a medium process and observer processes 
perform the check mechanisms. 
 We consider two types of medium process model. The first, it is characterized by an 
exploration mechanism that search all possibilities. It begins examining all combinations of 
different initial knowledge for each agent. Afterwards, it checks concurrent agents execution, at 
first we try combinations of two concurrent sessions, and so on. Our algorithm finishes when an 
out of memory is produced or it detects that the significant intruder knowledge is not 
incremented. In the general case the problem completeness [Lowe98, RuTu01] is undecidable, 
so it is impossible to be completely sure about problem solution. 
 The second is developed with an intruder specialized in finding a specific flaw. If we typify 
a kind of attack, we can evaluate the protocol trying to find a specific flaw. Perhaps this is not 
the best solution but it is very useful to protocol designer to be sure that for this kind of attack 
our protocol is not vulnerable. Furthermore, the majority of analysis tools that use model 
checking accept that this problem is undecidable, so we only get results about a definite 
vulnerability will not happen in the cases that we have examined. 
 The state transition of process medium is triggered when it receives any message. Then, it 
is stored in the intruder knowledge database, and an intruder decides which operations are going 
to be done, and go to the next state of routing. We have defined three different operations: 
eavesdrop, divert, and impersonate. Eavesdrop operation, meaning the intruder intercept the 
messages and rejects them. Divert operation, meaning the intruder intercepts the messages but 
they are not sent to the original receiver. Impersonate operation, meaning the intruder sends fake 
message to the original receiver.  



 The check mechanism is the observer process. This is a special SDL type of process that is 
evaluated in each transition of the protocol specification. It gets at all variable and state of 
whole process instances, so we can test it automatically. 
 The security properties are proved using condition rules. These rules check different 
situations where it is possible that there exists protocol vulnerability. These elements are agent’s 
states, variable value, and sent signals. 
 Actually, we analyze secrecy and authentication properties. When we want to check 
secrecy properties, we examine if the intruder knowledge can be deduced a specific value that 
we consider secret. The authentication is examined checking that all the principals finish at the 
same time, when it is expected. Some authors call to this the correspondence or precedence 
flaw. 

4.   EXAMPLE OF PROTOCOL ANALYSIS 

As an example to illustrate our proposal we explain the specification and analysis of a security 
system that make use of EKE (Encrypted Key Exchange) protocol [BeMe92], in order to gain 
access to a host, and cipher communications (figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Multilayer structure of EKE environment 

 
 We are going to evaluate EKE protocol. This is a key exchange authentication protocol that 
resists dictionary attacks by giving passive attacker insufficient information to verify a guessed 
password. As stated, it performs key exchange as well, so both parties can encrypt their 
transmissions once authentication is established. In the most general form of EKE, the two 
communicating parties encrypt short-lived public keys with a symmetric cipher, using their 
shared secret password as a key. Since it was designed, EKE has been developed into a family 
of protocols, many of which are stronger than the original or add new desirable properties.  
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 The basic EKE protocol is specified in SRSL (Figure 5). This represents two agents "A" 
and "B", A is the initiator and B is the responder. "P" is a share key (symmetric key shared by A 
and B). "Ka" is A's public key. "Re" is a session key (fresh symmetric key) generated by B. And 
"Na" and "Nb" are fresh and random number from A and B respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: EKE specification in SRSL 

 Firstly, we produce the SDL specification of EKE protocol, similar to an ordinary 
communications protocol. Then, we create the medium and observer processes, in order to 
analyze the correspondence flaw defined in CASRUL analysis tool [CASR00]. This flaw is 
produced when we execute two sessions concurrently. During first session, "A" and "B" are 
instanced to "a" and "b" principals identification, respectively, while during the second session, 
"A" and "B" are instanced to "b" and "a" principals identification, respectively. The observer 
process checks if agents of sessions 1 and 2 reach a final state and if theirs corresponding parties 
do not reach it. 

4.1   Data Type Definition 

The package "analcryptlib" includes all messages definition for analysis purpose. They are 
defined as SDL struct sort. Those belong to generic choice sort called "TMESSAGE". At the 
same time, it is defined a generic struct sort called "TENCMESS" where security operations are 
applied.  Those operators are "enc" to encipher, "denc" to decipher, "sing" to do a digital 
signature, and "hash" to apply a hash function. 

Definition 
A : Initiator; 
B : Responder; 
Na, Nb : Random; 
Ka  Public_key(A); 
P :  Share_key(A,B); 
Re : Session_key(B); 
Check 
Authentication (A,B); 
Session_instances 
[ A:b; B:a; P:p ]  
||   # parallel execution 
[ A:a; B:b; P:p ]; 
Intruder_behavior redirect; 
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4.2   Agent Definition  

Agents are defined as a process type included in SDL package called "agents". We specify agent 
initiator process type ("agentA"), and agent responder process type ("agentB"). Both processes 
type have states called "mess" plus a number of the message.  Each state has an input signal that 
is triggered when its related message is received. This message is checked before being 
accepted, and it stops if it is the final state or it composes the corresponding message, sends it, 
and steps to next state. 
 In order to treat all messages that are received, we have defined an asterisk state that saves 
all unprocessed signals, and in a lower priority level, it checks if there are any queued messages. 
If that is the case, it changes its state to that one related to that signal. Fresh data types are 
provided adding to their definition a process identification item (PID SDL sort). It is used to 
differentiate every concurrent session. Those process types can be used in a more complex 
system where EKE protocol is the authentication procedure. 

4.3   Intruder Model 

The Intruder model is divided into the exploration algoritm and the check mechanism. These 
depend on the analysis strategy that the analyzer must evaluate. There are a number of attacks 
types that have been developed, which can be implemented in our analysis mechanism. 
 The process type called "CorresAttack" provides the exploration algorithm. This consists 
on a state that is triggered by any input messages and executes intruder's operation. Then, the 
divert operation is applied sending message form first session to second session, and 
reciprocally.(figure 6). This is called the man-in-the-middle attack.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Main state of "CorresAttack" process 
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 In order to check the correspondence flaw we create the process type observer called 
"obvcorresattack". The main state ( checking ) has two possible alternatives that we can see in 
the following SDL code: 

 
STATE checking  
if ((GetState(A2)='final') AND (GetState(B1)='final')) AND(((GetState(B2)/='final')AND  ((Getstate(A1)/='final')))) 
then  
  REPORT "authentication error" 
  STOP 
else 
  if((GetState(A1)='final') AND (GetState(B2)='final'))AND(((GetState(B1)/='final')AND ((Getstate(A2)/='final'))))  
  then 
    REPORT "authentication error" 
    STOP 

         else 
           NEXTSTATE checking 
 
 The first condition is true when agent A of session one and agent B of session two reach a 
"final" state, and the other agents do not reach it. The second condition checks the inverse 
situation. When checked condition is true, a report action is executed, and it can stop searching 
or continue exploring for a new failure scenario. This report is provided in MSC language. 

4.4   Verification Procedure 

In order to explore the correspondence failure we have defined the processes distribution that is 
shown in figure 7. The system is specified connecting through the instance of the process type 
"Corresattack" called "medattack", an instance of process type "agentA" and another of process 
type "agentB". Those instances are called "A" and "B" respectively.  
 
 
 
 
 
 
 
 
 

 

Figure 7: SDL processes distribution  

This processes distribution enforce all messages, that are sent between A and B, to cross 
through the medium instance, where they are processed by intruder's operations. In that case, the 
intruder's operation provides redirect operation. 
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4.5   Analysis Result 

Following, we load the SDL specification in the SDL Validator tool. Firstly we configure the 
Validator, in order to evaluate the system correctly. Then, we execute the exhaustive exploration 
option. It finishes quickly and it generates MSC report. The following code shows how two 
sessions start at the same time. When the medium process intercepts the messages from a 
session and sends to the other session, then the agent A of first session and agent B of second 
session reach a "final" state. This means that the agent A of first session believes it is 
communicating with agent B of its session but, in fact, it is connected with agent B of second 
session.  

 
First session instance    Second session instance 
A_1=b, B_1=a     A_2=a, B_2=b 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 8: MSC of correspondence attack of EKE protocol 
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5. CONCLUSIONS AND FUTURE WORKS 

We have presented a new mechanism to specify security protocols and their possible attacks. 
The security protocol is specified in SRSL language and translated into SDL system, and attacks 
are implemented as SDL processes that develop intruder’s behavior and check safety properties. 
Protocol specification is independent of analysis procedure, so it can be used in others 
environments.  
 Several types of security attacks have been analyzed using our method. It has been 
essential to study how they can be produced in a real environment. We have shown a result of 
an analysis procedure that explains messages exchange between protocol agents and intruder 
process. 
 Actually, we are extending the SRSL in order to represent more complex protocols and to 
analyze others properties, such as anonymity. In order to check several kinds of attacks, we are 
gathering a set of generic attacks. Furthermore, we are studying how to implement those attacks 
in Internet environment. 
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