
Analysis of a Free Roaming Agent Result-Truncation Defense Scheme

Jianying Zhou
Institute for Infocomm Research

21 Heng Mui Keng Terrace
Singapore 119613

jyzhou@i2r.a-star.edu.sg

Jose A. Onieva∗and Javier Lopez
Computer Science Department

University of Malaga
29071 - Malaga, Spain

{onieva,jlm }@lcc.uma.es

Abstract

Mobile agents play an important role in electronic com-
merce. Security in free-roaming agents is especially hard
to achieve when the mobile code is executed in hosts that
may behave maliciously. Some schemes have been pro-
posed to protect agent data (or computation results). How-
ever, a known vulnerability of these techniques is thetrun-
cation attackwhere two visited hosts (or one revisited host)
can collude to discard the partial results collected between
their respective visits. Cheng and Wei proposed a scheme
in ICICS’02 to defense against the truncation of computa-
tion results of free-roaming agents [1]. Cheng-Wei scheme
is effective against such an attack in most cases. However,
we demonstrate that it still suffers from the truncation at-
tack when a special loop is established on the path of a
free-roaming agent. We further propose two amendments
to Cheng-Wei scheme to avoid such an attack.

Keywords: secure electronic commerce, mobile agent,
cryptographic protocol.

1. Introduction

Mobile agentsare software programs that live in com-
puter networks, performing their computations and moving
from host to host as necessary to fulfill their goals [2].Free
roamingmobile agents are free to choose their respective
next hops dynamically based on the data they acquired from
their past journeys.

Mobile agents are especially useful in electronic com-
merce, and have attracted lot of research interest. Never-
theless, as stated in [3], there are still many security issues
on mobile agents to be addressed. We could classify the
free-roaming agent security goals as

- protection of the host from malicious code, and

∗The second author’s work was done during his attachment to Institute
for Infocomm Research under its sponsorship.

- protection of the agent from a malicious host trying to
tamper the code and the agent data.

The community has initially placed more attention in the
first problem and come out with some solutions, since the
problem is similar to the one that already existed with Java
and ActiveX technologies in which the host has to run soft-
ware coming from untrusted sources. The most popular so-
lution for such a problem is rather simple, thesandboxso-
lution, i.e. an agent cannot control the machine in which it
is executed. The agent is executed in a sandbox that blocks
the access of the agent to the real machine. This feature
has been implemented in Java Mobile Code, Telescript, and
SafeTcl.

With respect to the second problem, we can distinguish
two principal sub-problems. In the first case, a malicious
host tries to tamper the agent’s code. To address this prob-
lem, computing with encrypted functions such ashomomor-
phic encryption schemes is under research [5]. In the sec-
ond case, a malicious host tries to tamper the data carried
by the agent. For instance, in a scenario that a free-roaming
agent is used to collect offers for an air-ticket, a malicious
host may try to “hijack” or “brainwash” the previously col-
lected data to favor its offer. This paper will be focused on
the solutions of protecting agent data (or computation re-
sults).

Suppose an agent departing from hostS0 will obtain a
list of encapsulated offersO1, · · · , On from different hosts
S1, · · · , Sn selected dynamically when the agent roams over
the network. The security properties on the agent data pro-
tection defined in [2] and extended in [1] are as follows.

• Data Confidentiality: Only the originatorS0 can ex-
tract the encapsulated offersO1, · · · , On.

• Non-repudiability: Si cannot deny submittingOi once
S0 receivesOi.

• Forward Privacy: No one except the originatorS0 can
extract the identity information of the hostsS1, · · · , Sn

by examining the chain of encapsulated offers.

1

J. Zhou, J. A. Onieva, and J. Lopez, “Analysis of a Free Roaming Agent Result-Truncation Defense Scheme”, 6th Conference on E-Commerce
(CEC04), pp. 221-226, 2004.
NICS Lab. Publications: https://www.nics.uma.es/publications

• Forward Integrity: None of the encapsulated offersOi

can be modified.

• Publicly Verifiable Forward Integrity: Anyone can
check the integrity of the chain of encapsulated offers.

• Insertion Defense: No new offer can be inserted in
O1, · · · , On without being detected.

• Truncation Defense: No existing offer can be removed
from O1, · · · , On without being detected.

Several schemes have been proposed to protect agent
data. Yee proposed to use aPartial Result Authentication
Code(PRAC) to ensure the integrity of the offers acquired
from the hosts [6]. In this scheme, an agent and its origina-
tor maintain a list of secret keys, or a key generating func-
tion. The agent uses a key to encapsulate the collected offer
and then destroys the key. However, a malicious host may
keep the key or the key generating function. When the agent
revisits the host or visits another host conspiring with it, a
previous offer or series of offers would be modified, without
being detected by the originator.

Karjoth et. al. extended Yee’s results [2]. In the KAG
scheme, each host generates a signing key for its successor
and certifies the corresponding verification key. Using the
received signature/verification key pair, a host signs its par-
tial result and certifies a new verification key for the next
host. Their scheme could resist the modification attack in
Yee’s scheme but not a two-colluder truncation attack. In
this attack, two visited hosts (or one revisited host) can col-
lude to discard the partial results collected between their
respective visits.

Cheng and Wei proposed a scheme in ICICS’02 to de-
fense against the truncation of computation results of free-
roaming agents [1]. Cheng-Wei scheme is effective against
such an attack in most cases. However, we demonstrate
that it still suffers from the truncation attack when a spe-
cial loop is established on the path of a free-roaming agent.
We further propose two amendments to Cheng-Wei scheme
to avoid such an attack.

The rest of this paper is organized as follows. In the next
section, we sketch Cheng-Wei Protocol presented in [1]. In
Section 3, we demonstrate our attack scenario. In Section 4,
we propose two solutions to such an attack. We end the
paper with conclusions in Section 5.

2. Cheng-Wei Protocol

We first sketch Cheng-Wei Protocol (N1) presented
in [1]. In this protocol, Cheng and Wei considered a shop-
ping scenario in which an agent departing from hostS0 will
obtain a list of offers from different hostsS1, · · · , Sn se-
lected dynamically when the agent roams over the network.

Among all the security properties that the protocol claims to
achieve is the truncation defense, and in particular, defense
against atwo-colluder truncation attack. In this scenario,
an attacker W captures an agent with encapsulated offers
O1, · · · , Oj−1, Oj , · · · , On and colludes with hostSj trying
to truncate all the offers afterOj and insert the attacker’s of-
fers to get the new chainO1, · · · , Oj−1, O

′
j , · · · , OW .

A public key infrastructure is assumed in the mobile
agent environment. Each hostSi has a certified pri-
vate/public key pair(v̄i, vi). Given a signature expressed
as Sigv̄i

(m), we assume that anyone could deduce the
identity of Si from it. The chain of encapsulated offers
O1, O2, · · · , On is an ordered sequence. Each entry of the
chain depends on some of the previous and/or succeeding
members. A chaining relation specifies the dependency.

An important definition given by Cheng and Wei in order
to avoid interleavingattacks (proposed by Roth [4]) is as
follows.

An agent is defined asA = (I, C, S) whereI
is the identity,C is the code and S is the state
of the agent. BothI and C are assumed to be
static whileS is variable. I is in the form of
(IDA, SeqA), whereIDA is a fixed identity bit
string of the agent andSeqA is a sequence num-
ber which is unique for each agent execution. The
originator signshA, wherehA = H(I, C) is the
agent integrity checksum andSigv̄0(hA) is the
certified agent integrity checksum. The agent car-
ries this certified checksum, allowing the public
to verify the integrity ofI andC and deduce the
identity ofS0.

In interleaving attacks, the attacker tries to use a previ-
ous host as an oracle, running its own agent but with the
attacked agent’s chain of offers. As thecertified agent in-
tegrity checksumis sent in each transmission between the
hosts, each host can verify the consistency of the chain of
offers (specially the one belonging to the agent’s ownerO0).
With this definition, an agent execution is uniquely identi-
fied.

Protocol N1 uses a co-signing mechanism in which a
host needs the preceding host’s signature on its encapsu-
lated offer before sending it to the next host. It also depends
on the signatures on the agent integrity checksum generated
by the two associated preceding hosts such that the current
host is able to verify that the preceding host did not insert
two offers in a self-looping mode.

The model and cryptographic notation used in the de-
scription of the original protocol N1 is summarized in Ta-
bles 1 and 2, respectively.

Protocol N1 consists of three parts: agent creation, agent
migration atS1, and agent migration atSi (2 ≤ i ≤ n) (see
Figure 1).

2

S0 = Sn+1 The originator
Si, 1 ≤ i ≤ n A host
oi, 1 ≤ i ≤ n An offer fromSi. The identity ofSi is

explicitly specified inoi

Oi, 1 ≤ i ≤ n An encapsulated offer (cryptographically
protectedoi) from Si

hi, 1 ≤ i ≤ n An integrity check value associated with
Oi and the next hop

O0, O1, .., On The chain of encapsulated offers

Table 1. Model Notation

ri A random number generated bySi

(v̄i, vi) Private and public key pair ofSi

(µ̄i, µi) Temporally private and public key pair ofSi

Encvi(m) A messagem encrypted with the public key
vi of Si

Sigv̄i(m) A signature ofSi on messagem with its
private keyv̄i

V er(σ, v) A signature verification function for
signatureσ with public keyv

H(m) A one-way, collision-free hash function
[m] Messagem sent via a confidential channel
A → B : m A sends messagem to B

Table 2. Cryptographic Notation

Agent Creation

1. Offer encapsulation

S0 : h0 = H(r0, S1)
S0 : O0 = Sigv̄0(Encv0(o0, r0), I, h0, µ1)
S0 : σ0 = Sigv̄0(h0)

2. Agent transmission

S0 → S1 : O0, [µ̄1, σ0]

Agent Migration at S1

3. Agent verification

S1 : receive O0, µ̄1, σ0

S1 : V er(O0, v0), and recover I, h0, µ1

S1 : V er(σ0, v0)

4. Interactive offer encapsulation

Si
S0 Si+1O0, 0d[u

1,
_

]
_
ui+1, idi-1,dO0..Oi,[]

S
1

..._
u

2
, 1d

0,dO0,O1,[]

Figure 1. Agent Transmission

S1 : h1 = H(O0, r1, S2)
S1 → S0 : temp1 = Encv0(Sigv̄1(o1, σ0), r1), h1, µ2

S0 : O1 = Sigv̄0(temp1)
S0 → S1 : O1

S1 : V er(O1, v0)
S1 : σ1 = Sigv̄1(h1)

5. Agent transmission

S1 → S2 : O0, O1, [µ̄2, σ0, σ1]

Agent Migration at Si (2 ≤ i ≤ n)

6. Agent verification

Si : receive O0, · · · , Oi−1, µ̄i, σi−2, σi−1

Si : V er(O0, v0), and recover I, h0, µ1

Si : V er(O1, v0), and recover h1, µ2

Si : V er(Ok, µk−1), and
recover hk, µk+1 recusively for 2 ≤ k ≤ i− 1

Si : V er(σi−2, vi−2)
Si : V er(σi−1, vi−1)
Si : verify Si−2 6= Si−1

7. Interactive offer encapsulation

Si : hi = H(Oi−1, ri, Si+1)
Si → Si−1 : tempi = Encv0(Sigv̄i(oi, σi−2, σi−1),

ri), hi, µi+1

Si−1 : Oi = Sigµ̄i−1(tempi)
Si−1 → Si : Oi

Si : V er(Oi, µi−1)
Si : σi = Sigv̄i(hi)

8. Agent transmission

Si → Si+1 : {Ok|0 ≤ k ≤ i}, [µ̄i+1, σi−1, σi]

It is assumed that there is an authentication protocol be-
tweenSi and Si−1 in the co-signing process.Si−1 will
store the records of the departed agents in such a way that
it would only sign once forSi on the partial results of a
particular departed agent.

Each host is responsible for checking and verifying all
the messages as well as the chaining relation in the agent
state whenever it arrives. If any of the agent verifications
fails or Si receives twice the same agent fromSi−1 then it
rejects the agent.

3. Security Analysis

In this section we present a two-colluder truncation at-
tack on Cheng-Wei Protocol. The protocol bases its secu-
rity, among other properties, on the impossibility for a host
Sj , which tries to collude with a hostSW (W > j), to re-
quest a signature on another encapsulated offerO′

j from the

3

previous hostSj−1 in order to truncate all of the encapsu-
lated offers collected from the hosts betweenSj+1 andSW .

Our attack scenario is as follows (see Figure 2). A free
roaming agent that has visited a hostSj re-visitsSj after
visiting another hostSj+1, in other words,Sj+2 = Sj .
Then, no matter how the agent will roam after visitingSj+2,
Sj+2 can always collude with a hostSW being visited by
the agent to truncate all of the encapsulated offers collected
afterSj+2. Sj+2 need not collude withSj+1 in order to get
a new co-signed encapsulated offerO′

j+2 from Sj+1. In-
stead,Sj+2 can sign it by itself with the temporary private
key µ̄j+1 which was generated bySj whereSj = Sj+2!

Sj|Sj+2

S
W

Sj+1

...

Sj+3

Sj-1

...

O0..Oj-1,Oj, Oj+1

O0..Oj-1,Oj

O0..Oj-1,O j,Oj+1,O'j+2,O'W O0..Oj-1,Oj, Oj+1,Oj+2

O0..Oj-1,Oj, Oj+1,Oj+2,Oj+3...O W

truncated chain

Figure 2. Attack Scenario

Suppose the agent visitedS0, S1, · · · , Sj , Sj+1, Sj+2 (=
Sj), Sj+3, · · · , SW , and collected the encapsulated offers

O0, O1, · · · , Oj , Oj+1, Oj+2, Oj+3, · · · , OW

The processes of interactive offer encapsulation and agent
transmission at hostsSj , Sj+1 andSj+2 (= Sj) are as fol-
lows.

When the agent is atSj :

Sj : hj = H(Oj−1, rj , Sj+1)
Sj → Sj−1 : tempj = Encv0(Sigv̄j (oj , σj−2, σj−1),

rj), hj , µj+1

Sj−1 : Oj = Sigµ̄j−1(tempj)
Sj−1 → Sj : Oj

Sj : V er(Oj , µj−1)
Sj : σj = Sigv̄j (hj)
Sj → Sj+1 : {Ok|0 ≤ k ≤ j}, [µ̄j+1, σj−1, σj]

When the agent is atSj+1:

Sj+1 : hj+1 = H(Oj , rj+1, Sj+2)
Sj+1 → Sj : tempj+1 = Encv0(Sigv̄j+1(oj+1,

σj−1, σj), rj+1), hj+1, µj+2

Sj : Oj+1 = Sigµ̄j (tempj+1)
Sj → Sj+1 : Oj+1

Sj+1 : V er(Oj+1, µj)
Sj+1 : σj+1 = Sigv̄j+1(hj+1)
Sj+1 → Sj+2 : {Ok|0 ≤ k ≤ j + 1}, [µ̄j+2, σj , σj+1]

When the agent is atSj+2 (= Sj):

Sj+2 : hj+2 = H(Oj+1, rj+2, Sj+3)
Sj+2 → Sj+1 : tempj+2 = Encv0(Sigv̄j+2(oj+2,

σj , σj+1), rj+2), hj+2, µj+3

Sj+1 : Oj+2 = Sigµ̄j+1(tempj+2)
Sj+1 → Sj+2 : Oj+2

Sj+2 : V er(Oj+2, µj+1)
Sj+2 : σj+2 = Sigv̄j+2(hj+2)
Sj+2 → Sj+3 : {Ok|0 ≤ k ≤ j + 2}, [µ̄j+3, σj+1, σj+2]

Suppose the agent roams toSj+3, · · · , SW after visiting
Sj+2, and thenSW colludes withSj+2 (= Sj). Sj+2 can
initiate the truncation attack with the following processes of
interactive offer encapsulation and agent transmission.

Sj+2 (= Sj) prepares:

Sj+2 : h′j+2 = H(Oj+1, rj+2, SW)
Sj+2 : temp′j+2 = Encv0(Sigv̄j+2(o

′
j+2, σj ,

σj+1), rj+2), h′j+2, µW

Sj+2 : O′j+2 = Sigµ̄j+1(temp′j+2)
Sj+2 : σ′j+2 = Sigv̄j+2(h

′
j+2)

Sj+2 → SW : {Ok|0 ≤ k ≤ j + 1, O′
j+2},

[µ̄W , σj+1, σ
′
j+2]

When the agent is atSW :

SW : h′W = H(O′
j+2, r

′
W , SW+1)

SW → Sj+2 : temp′W = Encv0(Sigv̄W (o′W , σj+1,
σ′j+2), r

′
W), h′W , µW+1

Sj+2 : O′
W = Sigµ̄j+2(temp′W)

Sj+2 → SW : O′
W

SW : V er(O′W , µj+2)
SW : σ′W = Sigv̄W

(h′W)
SW → SW+1 : {Ok|0 ≤ k ≤ j + 1, O′

j+2, O
′
W },

[µ̄W+1, σ
′
j+2, σ

′
W]

In the above attack,Sj+2 andSW can collude to truncate
the encapsulated offersOj+2, · · · , OW . Then,SW forwards
the truncated chain of encapsulated offers

O0, O1, · · · , Oj , Oj+1, O
′
j+2, O

′
W

to the next hostSW+1. As we can see, further checks made
by SW+1 and even the originator of the agent will not be
able to detect such a truncation attack.

4. Amendments

The cause for the attack is that a host may possess suf-
ficient information to forge a signature that is supposed to
be generated by its predecessor to establish a publicly veri-
fiable chain of encapsulated offers. To preserve the forward

4

privacy, each encapsulated offer is not signed with a certi-
fied private key of a host. Instead, it is signed with a tempo-
rary private key generated by a host being just visited. Then,
if a loop of Si → Si+1 → Si is formed by a free-roaming
agent, the truncation attack will succeed.

A simple solution to avoid this attack is to disallow such
a roaming path. In Figure 2, whenSi+1 is preparing the
interactive offer encapsulation, it knows the identity of its
predecessorSi by verifying σi and should not selectSi as
the next host to be visited.

We could have a more generic solution to avoid the trun-
cation attack even if a loop ofSi → Si+1 → Si is formed
by a free-roaming agent. To protect against the imperson-
ation ofSi+1 by Si in generating an encapsulated offer with
a temporary private keȳµi+1, the key pair(µ̄i+1, µi+1)
should be generated bySi+1 itself rather than bySi. Then
Si+1 sendsµi+1 to Si to testify thatµi+1 is Si+1’s tempo-
rary public key. As̄µi+1 is only known toSi+1, imperson-
ation is prevented while the forward privacy property of the
protocol is preserved. The protocol is modified as follows
(see Figure 3.

Agent Creation

1. Offer encapsulation

S0 : h0 = H(r0, S1)
S0 : O0 = Sigv̄0(Encv0(o0, r0), I, h0)
S0 : σ0 = Sigv̄0(h0)

2. Agent transmission

S0 → S1 : O0, [σ0]

Agent Migration at S1

3. Agent verification

S1 : receive O0, σ0

S1 : V er(O0, v0), and recover I, h0

S1 : V er(σ0, v0)

4. Interactive offer encapsulation

S1 : h1 = H(O0, r1, S2)
S1 → S0 : temp1 = Encv0(Sigv̄1(o1, σ0), r1),

h1, µ1

S0 : O1 = Sigv̄0(temp1)
S0 → S1 : O1

S1 : V er(O1, v0)
S1 : σ1 = Sigv̄1(h1)

5. Agent transmission

S1 → S2 : O0, O1, [σ0, σ1]

Agent Migration at Si (2 ≤ i ≤ n)

6. Agent verification

Si : receive O0, · · · , Oi−1, σi−2, σi−1

Si : V er(O0, v0), and recover I, h0

Si : V er(O1, v0), and recover h1, µ1

Si : V er(Ok, µk−1), and
recover hk, µk recusively for 2 ≤ k ≤ i− 1

Si : V er(σi−2, vi−2)
Si : V er(σi−1, vi−1)
Si : verify Si−2 6= Si−1

7. Interactive offer encapsulation

Si : hi = H(Oi−1, ri, Si+1)
Si → Si−1 : tempi = Encv0(Sigv̄i

(oi, σi−2, σi−1),
ri), hi, µi

Si−1 : Oi = Sigµ̄i−1(tempi)
Si−1 → Si : Oi

Si : V er(Oi, µi−1)
Si : σi = Sigv̄i

(hi)

8. Agent transmission

Si → Si+1 : {Ok|0 ≤ k ≤ i}, [σi−1, σi]

Si
S0 Si+1O0, 0d[] idi-1,d]O0..Oi,[

S
1

...
1d

0,d]O0,O1,[

Figure 3. Agent Transmission

With the above change, even if the agent revisits one
host, the host still has to request to the previous host for a
signature over its new encapsulated offer, and the co-signing
process cannot be forged since each host’s temporary pri-
vate key is known to that host only.

5. Conclusion

In mobile code systems more attention is needed in the
design of protocols to fulfill those properties. As a con-
sequence of dynamically selected hosts on the path of a
free roaming agent, a host can be revisited, and hence, we
must ensure that the information it possesses is not enough
to carry out a truncation attack by colluding with another
party.

In this paper, we briefly reviewed Cheng-Wei scheme for
the defense of truncation attack. Their scheme is effective
against such an attack in most cases. However, we found
that it still suffers from the truncation attack when a special
loop is established on the path of a free-roaming agent. We
further proposed two solutions to avoid the attack.

5

References

[1] J. Cheng and V. Wei. Defenses against the truncation of
computation results of free-roaming agents. InFourth
International Conference on Information and Commu-
nications Security, volume LNCS 2513, pages 1–12,
December 2002.

[2] G. Karjoth, N. Asokan, and C. G̈ulcü. Protecting the
computation results of free-roaming agents. InMobile
Agents, volume LNCS 1477, pages 195–207, Septem-
ber 1998.

[3] G. Karjoth and J. Posegga. Mobile agents and tel-
cos’ nightmares. Technical Report 55(7/8):29-41, IBM,
2000.

[4] V. Roth. Programming satan’s agents. In1st Inter-
national Workshop on Secure Mobile Multi-Agent Sys-
tems, May 2001.

[5] T. Sander and C. Tschudin. Protecting mobile agents
against malicious hosts. InMobile Agents and Security,
volume LNCS 1419, pages 44–60, 1998.

[6] B. Yee. A sanctuary for mobile agents. InSecure Inter-
net Programming, pages 261–273, 1999.

6

