
Multi-Party Non-Repudiation: A Survey

JOSE A. ONIEVA

Computer Science Department, University of Malaga, Spain

and

JIANYING ZHOU

Institute for Infocomm Research, Singapore

and

JAVIER LOPEZ

Computer Science Department, University of Malaga, Spain

Abstract : Non-repudiation is a security service that plays an important role in many Internet

applications. Traditional two-party non-repudiation has been studied intensively in the literature.
This survey focuses on the multi-party scenarios and provides a comprehensive overview. It starts

with a brief introduction of fundamental issues on non-repudiation, including the types of non-

repudiation service and cryptographic evidence, the roles of trusted third party, non-repudiation
phases and requirements, and the status of standardization. Then it describes the general multi-

party non-repudiation problem, and analyzes the state-of-the-art mechanisms. After that, it

presents in more detail the 1-N multi-party non-repudiation solutions for distribution of differ-
ent messages to multiple recipients. Finally it discusses the advanced solutions for two typical

multi-party non-repudiation applications, i.e., multi-party certified email and multi-party contract

signing.

Categories and Subject Descriptors: K4.4 [Computers and Society]: Electronic Commerce—

Security; H4.3 [Information Systems Applications]: Communications Applications—Elec-
tronic Mail; C2.2 [Computer Communication Networks]: Network Protocols—Applications

General Terms: Security

Additional Key Words and Phrases: multi-party applications, multi-party protocols, non-repudiation

1. FUNDAMENTALS OF NON-REPUDIATION

Repudiation is one of the fundamental security issues existing in paper-based and
electronic environments. Dispute of transactions is a common issue in the business
world. Transacting parties want to seek a fair settlement of disputes, which brings

Authors addresses: Jose A. Onieva, Computer Science Department, ETSI Informatica, Campus

de Teatinos, 29071 - Malaga, Spain. mailto: onieva@lcc.uma.es. Jianying Zhou, Institute for In-
focomm Research, 1 Fusionopolis Way, 21-01 Connexis, South Tower, Singapore 138632. mailto:
jyzhou@i2r.a-star.edu.sg. Javier Lopez, Computer Science Department, ETSI Informatica, Cam-

pus de Teatinos, 29071 - Malaga, Spain. mailto: jlm@lcc.uma.es.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0360-0300/YY/00-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, 20YY, Pages 1–46.

J. A. Onieva, J. Zhou, and J. Lopez, “Multi-Party Nonrepudiation: A survey”, ACM Comput. Surveys, vol. 41, pp. 5, 2008.
NICS Lab. Publications: https://www.nics.uma.es/publications

2 · Jose A. Onieva et al.

the need of non-repudiation services in their transactions. The motivation for non-
repudiation services is not just the possibility that communicating parties may try
to cheat each other. It is also the fact that no system is perfect, and that different
and unexpected circumstances can arise in which two parties end up with different
views of something that happened. Network failure during the protocol run is a
representative example.

We define a basic transaction as the transferring of a message M (e.g. electronic
goods, electronic cash or electronic contracts) from user A to user B, and represent
this event with the following message flow: A → B : M . Thus, typical disputes
that may arise in a basic transaction with a deadline T could be

- A claims that it has sent M to B while B denies having received it;

- B claims that it received M from A while A denies sending it;

- A claims that it sent M before T while B denies receiving it before T .

Fair non-repudiation can be considered as an extended fair exchange problem
in which non-repudiability is made an integral requirement of the exchange (in
general it may not be required). We can find various instances of the general
exchange problem in different types of commercial activities: purchase, contract
signing, certified mail or, more generally, in any barter conducted by means of
digital networks.

An exchange is said to be fair if at the end of the exchange, either each player
receives the item it expects or neither player receives any additional information
about the others’ item. For instance, in payment protocols, fair exchange can ensure
that a customer receives the digital goods from a vendor if and only if the vendor
receives the payment from the customer.

The features of the transaction will decide the type of non-repudiation services
to be deployed. For any non-repudiation services, evidence is a crucial object,
and the processing of evidence usually involves the assistance from Trusted Third
Parties (TTP). There are different activities at each phase of processing. The non-
repudiation policy defines the behavior of these activities. Finally, the eventual
success of non-repudiation depends upon technical and legal supports.

Non-repudiation is, thus, one of the essential security services in computer net-
works defined by the ITU in X.813 [ITU-T X.813 1996]. Following, we establish the
characteristics of this security service and survey the progress of standardization
of non-repudiation in general. Further in this survey, we analyze this service when
multiple entities are involved.

1.1 Specific Non-repudiation Services

Non-repudiation services help the transacting parties to settle possible disputes over
whether a particular event or action has taken place in a transaction. We define
a non-repudiation protocol as a message flow in which entities exchange digital
evidence in order to provide such non-repudiation services.

In an electronic transaction, message transfer is the building block and there are
two possible ways of transferring a message (see figure 1).

- The originator O sends the message to the recipient R directly; or
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 3

D

O R
Direct communication

Indirect communication

Fig. 1. Models of message transfer

- The originator O submits the message to a delivery agent D which then delivers
the message to the recipient R.

In the direct communication model, because the originator and the recipient
eventually do not trust each other, the originator is not sure that the recipient will
acknowledge a message it has received. On the other hand, the recipient will only
acknowledge messages it has received. In order to facilitate a fair exchange of a
message and its receipt in which neither party will gain an advantage during the
transaction, a TTP will usually be involved. Of course, the extent of the TTP’s
involvement varies among different protocols, which allows to provide a protocol
distinction.

To establish the accountability for the actions of the originator and the recipient,
the following non-repudiation services are required.

- Non Repudiation of Origin (NRO) is intended to protect against the origi-
nator’s false denial of having originated the message. Evidence of Origin (EOO)
is generated by the originator or a TTP on its behalf, and will be held by the
recipient.

- Non Repudiation of Receipt (NRR) is intended to protect against the re-
cipient’s false denial of having received the message. Evidence of Receipt (EOR)
is generated by the recipient or a TTP on its behalf, and will be held by the
originator.

In the indirect communication model, a delivery agent is involved to transfer a
message from the originator to the recipient. In order to support the settlement
of possible disputes between the originator and the delivery agent or between the
originator and the recipient, the following non-repudiation services are required.

- Non Repudiation of Submission (NRS) is intended to provide evidence that
the originator submitted the message for delivery. Evidence of Submission (EOS)
is generated by the delivery agent, and will be held by the originator.

- Non Repudiation of Delivery (NRD) is intended to provide evidence that
the message has been delivered to the recipient. Evidence of Delivery (EOD) is
generated by the delivery agent, and will be held by the originator. Similarly, we
should be aware that evidence provided by this service cannot be used to make
further deductions about the delivery status without some sort of assumption on
the communication channel.

ACM Computing Surveys, Vol. V, No. N, 20YY.

4 · Jose A. Onieva et al.

1.2 Evidence

The evidence is the data or information that can be used if a dispute arises. It can
be either generated and stored by the local user or by a third party. Its format
depends on the cryptographic mechanisms agreed in the service, such as digital sig-
natures (public key cryptography) and secure envelopes (secret key cryptography).
Whichever the format is, this evidence has to be composed on common information
that helps to clearly identify a transaction and thus resolve a possible dispute in a
more deterministic way. Some of these common elements are:

- Non-repudiation service to which evidence is related
- Non-repudiation policy identifier
- Originator identity
- Recipient identity
- Third party identity if evidence generator differs from the originator
- Message or a digital fingerprint
- Message identifier
- Information needed for verifying evidence (i.e. digital certificate, symmetric secret

key info) if it is not publicly available
- TTP’s identifier and role (see section 1.3) when involved in the service
- Unique evidence identifier
- Time information (time and date in which evidence was generated, expiry date, . . .).

If this data is certified by a Time Stamping Authority (TSA) it could include a
time-stamp service identifier.

When a secure envelope is used to provide evidence, data is stamped with a secret
key known only by the TTP, thus being the generator and verifier of evidence as
requested by the users.

TTP participation can be relaxed through the use of smartcards or manipulation-
resistent modules [ITU-T X.813 1996] in which secret keys are properly installed.
In this case, the smartcard plays the role of a distributed TTP. The generator
smartcard is used for evidence generation while the verifier’s one only for validation.
The latter one cannot be used to generate evidence with the secret key (even if it
is the same one), such that only the user who owns the generator smartcard could
have created the evidence. This is achieved by correctly installing the secret key and
the module which controls whether the user can use its smartcard for generation or
verification. This module is tamper-proof and different for the generator and the
verifier such that it performs just one of the two possible functions.

The secure envelope maintains integrity of the information using a digital finger-
print (i.e. hash function) and confidentiality (e.g. symmetric cipher with the secret
key).

When a digital signature is used to provide evidence, information is enclosed in
a data structure digitally signed by a Certification Authority (CA) such that only
the CA can sign the data and other participants (recipients and TTP) can verify it.
Unforgeable digital signatures provide a clear statement of the essential components
of handwritten signatures; namely, a user’s ability to sign by itself, a universally
agreed verification procedure and the assertion that it is unfeasible (or at least very
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 5

hard) to selectively forge signatures in a manner that passes the verification process
without being detected.

In order to bring all of this into reality, digital signatures used as evidence in a
non-repudiation service need an infrastructure backing it up. There will be a third
party certifying participants’ link between their identity and public key. Only in
this way any recipient can verify the digital signature. Digital signatures introduce
a new disrupting element in the non-repudiation service, as the link certified by the
CA (often referred as digital certificate) may have an expiry date. This fact has
to be checked when evidence is verified either by the recipient or a TTP (e.g. an
adjudicator). If this link has expired, evidence will be valid only if it was gener-
ated before. For this reason, time information has to be included in the evidence
generated.

In general, it is more efficient, in terms of computation, for users to use secure
envelopes with symmetric encryption techniques, since the TTP (or the smartcard)
is in charge of the generation/verification process. Nevertheless, in this case,

- Principals have to unconditionally trust a third party for evidence generation and
verification;

- TTP’s on-line availability is needed in order to participate in the service when
requested;

- If users are to relax the TTP participation as stated previously, then they need
to use dedicated hardware to avoid the TTP becoming a bottleneck.

So, users would likely prefer to use digital signatures because

- It only needs an implicit trust over the CA computing the digital certificates. But
this trust can be relaxed with legal agreements between users and authorities, au-
dited registration processes and a quite advanced standardization [ITU-T X.509
2000];

- Trust imposed over the CA is less critical than in the former case, since it certifies
the existence of a binding between a user and a public key, verifying at the same
time that this uniquely corresponds to a private key. But this TTP does not
need to know the key itself. So, there is no danger of this entity accessing the
content or even being able to generate it (as with secure envelopes).

Additionally, Maurer [Maurer 2004] proposed a novel view of digital evidence
called digital declarations, based on a digital recording of a willful act indicating
agreement to a document or contract. This proposal tries to address some of the
problems mentioned above that digital signatures bring with them. It also includes
new elements in the digital evidence (as willful acts) to augment the concept of
evidence, bringing it nearer to the one used in human judgements. Among all the
concepts introduced by Maurer, the semantics of certificates is very important. He
proposes that when registering the public key, the user must explicitly commit to
be liable for signatures with respect to that public key. Evidence confirming this
commitment, designated as change has several important implications for us:

- The certificate has absolutely no value as evidence in court, only the commitment
declaration does.

- Only the recipient of a signature (evidence) must trust the CA.
ACM Computing Surveys, Vol. V, No. N, 20YY.

6 · Jose A. Onieva et al.

- An expiration date stated on the commitment declaration must be interpreted
differently. It specifies until when evidence can be presented as valid, regardless
of when it was generated. In other words, evidence expires, not public keys. As
a consequence of this view, the validity period of evidence should be kept short.

- A commitment declaration cannot be revoked. Revocation of a public key is
impossible (not needed).

Actually, with these definitions, the signature seems to be more insecure than in
the traditional view when revocation is possible while the commitment declaration
is valid. But, on the other hand, it seems to be closer to the business model if
we consider the discussed users’ liability in the traditional approach 1. Maurer
proposes the concept of delegation signatures (digital signatures assisted by TTPs)
to strengthen its security.

Furthermore, this digital declaration and commitments are a new approach to
digital evidence with no implications on how non-repudiation protocols handle the
evidence.

1.3 Roles of the TTP

One of the main features which allows us to classify the TTPs is its role on a
non-repudiation service. A TTP which does not participate actively in the non-
repudiation service, i.e., it will be invoked only when there is something wrong in
a transaction, is referred to as off-line TTP. An on-line TTP participates in the
generation and verification of evidence throughout the protocol instance. An in-line
TTP acts as an intermediary in all the interactions among the users. The difference
between third parties that are used only in case of exceptions and third parties that
are actively involved in a protocol was first explained in [DeMillo and Merritt 1983].
Obviously, the first type is preferred if efficiency is the major concern, but in some
situations and e-commerce applications, to have a delivery agent or intermediary
could be the best practical solution.

Other roles have appeared as a consequence of research achieved in exchange
protocols. These new approaches aim at eliminating the involvement of the TTP
completely but need strong requirements; either all involved parties must have
the same computational power as in gradual exchange or fairness depends on the
number of protocol rounds [Markowitch and Roggeman 1999] as in probabilistic
protocols.

Finally, an additionally existing trusted third party is the Adjudicator. This is
the party which drives a resolution process to a conclusion depending on evidence
presented by the entities and optionally contacting the TTP which participated
in the protocol. In order to facilitate its task, a well defined dispute resolution
process in accordance with the non-repudiation policy must exist. This dispute
resolution process has to take into consideration the legal framework in which it is
defined. New or established On-line Dispute Resolution (ODR) processes can be
used [Brannigan 2004].

1In the current digital signature laws, the main “hot potato” does not come from the technical
aspects but from the users’ liability when it does not understand the technical process or this is

done without its knowledge.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 7

1.4 Non-repudiation Phases

Non-repudiation services establish accountability of an entity related to a particular
event or action to support dispute resolution. Provision of these services can be
divided into different phases such as: generation, transfer, verification, storage and
dispute resolution.

1.4.1 Evidence Generation. Evidence generation is the first phase in the provi-
sion of a non-repudiation service. Depending on the non-repudiation service being
provided and the non-repudiation protocol being used, evidence could be generated
by the originator, the recipient, and/or the TTP. The elements of non-repudiation
evidence and the algorithms used for evidence generation are determined by the
non-repudiation policy in effect. When NRO and NRR services are required, evi-
dence of origin and receipt are usually generated by the originator and the recipient,
respectively, if digital signature is used for evidence generation. When NRS and
NRD services are required, evidence of submission and delivery will be generated by
a TTP, like a notary or a delivery authority. If a secure envelope is used for evidence
generation, it should always be generated by a TTP on behalf of the originator or
recipient.

A TTP may also generate and provide supporting evidence in a non-repudiation
service. For example, in a fair non-repudiation protocol [Zhou and Gollmann 1996],
the notary will digitally sign the message key provided by the originator and make
the confirmed message key available to both the originator and the recipient. The
confirmed message key will serve as part of non-repudiation evidence to prove that
the message key was sent from the originator (via the notary), and is available to
the recipient.

1.4.2 Evidence Transfer. Evidence transfer is the most challenging phase in
the provision of a non-repudiation service. It mainly consists of the sending and
reception of evidence among participants. Actually, it represents the core of a
non-repudiation protocol. It is greatly influenced by the communication channel
properties. The different options are as follows:

- The communication channel is unreliable. In this case, data can be lost.

- The communication channel is resilient (also called asynchronous network). In
this case, data is delivered after a finite but unknown amount of time.

- The communication channel is operational (also called synchronous network). In
this case, data is delivered after a known, constant amount of time.

An unreliable channel will in most cases be transformed into a resilient channel
by the use of the appropriate transport protocol (e.g. retransmissions).

1.4.3 Evidence Verification. Newly received evidence should be verified to gain
confidence that the supplied evidence will indeed be adequate in the event of a
dispute arising. The verification procedure is closely related to the mechanism of
evidence generation.

If evidence is generated through a secure envelope, it should be verified by a
TTP at the request of the user because the secret key for evidence generation and
verification is only held by the TTP. Obviously, the extra communication between

ACM Computing Surveys, Vol. V, No. N, 20YY.

8 · Jose A. Onieva et al.

the user and the TTP will cause a substantial delay which might be unacceptable
for many on-line electronic transactions.

1.4.4 Evidence Storage. Because the loss of evidence could result in the loss of
future possible dispute resolution, the verified evidence needs to be stored safely.
The duration of storage will be defined in the non-repudiation policy. For extremely
important evidence aimed at long term non-repudiation, it could be deposited with
a TTP.

1.4.5 Dispute Resolution. Dispute resolution is the last phase in a non-repudiation
service. This phase will not be activated unless disputes related to a transaction
arise. When a dispute arises, an adjudicator will be invoked to settle the dispute
according to the non-repudiation evidence provided by the disputing parties and
the non-repudiation policy in effect. This policy should be agreed in advance by
the parties involved in the service.

The adjudicator needs to verify the evidence, probably with the assistance from
other TTPs, e.g. from a notary when evidence was generated through a secure
envelope. Nowadays, different on-line arbitrator platforms 2 exist which allows for
dispute resolution being processed through document and evidence transactions as
well as the cooperation of on-line parties 3. The dispute resolution process can
either be registered in one of these platforms and use its services or use its own
rules for the definition of an on-line arbitrator.

1.5 Non-repudiation Requirements

Different targets of each non-repudiation service may influence the protocol design.
Nevertheless, there are several common requirements in the design of a good non-
repudiation protocol.

— Fairness. Repudiation can only be prevented when each party is in possession
of proper evidence and no party is in an advantageous position during a transaction.
The reliability of communication channels affects evidence transfer. Moreover, a
dishonest party may abort a transaction, which could leave another party without
evidence. Various fair non-repudiation protocols with different features have been
proposed. Some of them can be found in [Kremer et al. 2002; Gürgens et al. 2003].
Asokan defined two levels of fairness [Asokan 1998]. A protocol fulfills strong fair-
ness if when the exchange is completed, A at least can prove to an arbitrator that
B has received (or can still receive) the item, without any further intervention from
A. On the other hand, a protocol fulfills weak fairness if when the exchange is
completed for A, it can prove to an arbitrator that B has received (or can still
receive) the item, or otherwise an affidavit can be presented to demonstrate that B
misbehaved or a network failure occurred.

— Efficiency is another criteria. TTPs will usually be involved in non-repudiation
services and its involvement will be essential in order to determine the efficiency
of the protocol. Fair non-repudiation protocols proposed in [Asokan et al. 2000;

2Note that these platforms themselves may need to implement a non-repudiation service.
3See http://www.ietf.org/html.charters/ltans-charter.html or http://www.disputemanager.com/mediation/

what.asp or http://www.dr.bbb.org

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 9

Asokan et al. 1997; Zhou and Gollmann 1997; Pfitzmann et al. 1998; Asokan et al.
1998; Markowitch and Saeednia 2001; Micali 2003] meet the criteria of efficiency
and are often called optimistic protocols. Some authors define this property as
effectiveness; that is, if no error occurs and no party misbehaves, then the TTP
should not intervene.

— Timeliness is also desirable in evidence transfer. For various reasons, a trans-
action may be delayed or terminated. Hence, the transacting parties may not know
the final status of a transaction on time, and would like to unilaterally bring a
transaction to completion in a finite amount of time without losing fairness.

— Policy. This has to perfectly define all the parameters needed by the service,
some of which can be: rules for evidence generation and verification, rules for
evidence storage, evidence use and the dispute resolution process.

There are optional requirements, and their fulfillment depends on the application
itself. If the application requires them, they turn out to be as critical as the common
ones previously defined.

— Verifiability of TTP : This property adds one level of security to the protocol
itself when it does not exist a strong trust relationship among participants with
the TTP which collaborates in the protocol. If the TTP misbehaves resulting in a
loss of fairness for any participating entity, all harmed parties will be able to prove
it to an arbitrator or verifier. It can be very useful during the initial setup of a
non-repudiation infrastructure as well as in those scenarios in which the TTP has
to be selected by the entities on the fly (e.g. in an ad-hoc network). It usually
assumes that when the TTP misbehaves, the rest of the entities are honest.

— Transparency of TTP : It also appears in the literature as invisible TTP. If
the TTP is contacted to help in the protocol, the resulting evidence will be similar
to the one obtained in case the TTP is not involved. This is especially important
in practical cases, in which an institution does not wish to change the existing
processes to accommodate the new signatures or affidavits generated by TTPs. At
the same time, this property helps in the privacy of users with respect to the use
or not of a TTP during the protocol run.

Unfortunately, these last two properties are more often incompatible (achieving
one of them increases the difficulty to fulfill the other one) and a trade-off has to
be assumed when designing the protocols.

1.6 Analysis of Standards

ISO and ITU standards provide a guideline for engineering and should reflect the
state-of-the-art of science and technology. Non-repudiation is one of the security
services in the ISO/OSI security framework, and is especially important for securing
electronic commerce. Many efforts have been devoted to the standardization of non-
repudiation services and mechanisms. However, some issues have not yet been well
addressed.

There are two international standards dealing with non-repudiation: ISO/IEC
10181-4 [ISO/IEC 1996] 4 and ISO/IEC 13888 [ISO/IEC 2004; 1998; 1997]. The

4Revised by 10181-4:1997 Information technology – Open Systems Interconnection – Security

ACM Computing Surveys, Vol. V, No. N, 20YY.

10 · Jose A. Onieva et al.

first one refines and extends the concept of non-repudiation services as described
in ISO 7498-2 and provides a framework for the development and provision of
these services. In this framework, the goal of non-repudiation and types of non-
repudiation services are defined. The basic mechanisms for non-repudiation services
and general management requirements for these services are identified. The roles
that a TTP plays in non-repudiation services are listed. The relationship of non-
repudiation services to other security services is explained. As a general framework,
this standard does not include specific non-repudiation mechanisms. This remains
as an open issue treated in [ISO/IEC 1998; 1997].

ISO/IEC 13888 “Information technology - Security techniques - Non-repudiation”
is composed of three parts. The first one [ISO/IEC 2004] 5 serves as a general model
for subsequent parts specifying non-repudiation mechanisms using cryptographic
techniques. It establishes two main types of evidence, the nature of which depends
on cryptographic techniques employed: the secure envelopes and digital signatures
generated by an evidence generator (which can be the user itself) or an evidence
generating authority using asymmetric cryptographic techniques.

In [ISO/IEC 1998; 1997], a set of non-repudiation mechanisms based on symmet-
ric and asymmetric cryptographic techniques are identified. All of them are final
international standards in the different phases that ISO/IEC apply to its docu-
ments. The history of this multipart standard which is being developed by ISO/IEC
JTC1/SC27 dates back to August 1991 [ISO/IEC 1991]. Zhou’s book [Zhou 2001]
analyzes the ISO/IEC 13888 non-repudiation mechanisms, and points out their
weaknesses and limitations. It also discusses the problems on defining the roles of
time stamps in the ISO/IEC 13888 non-repudiation evidence.

In 2006, and in response to a request of ISO’s Subcommittee 27 (SC27) Secre-
tariat, the Working Group 2 (WG2) of the same Subcommittee agreed to revise
ISO/IEC 13888-2 as well as ISO/IEC 13888-3. The same happened later with
ISO/IEC 13888-1. Though drafts of the three parts have been circulated within
WG2, no final documents are available at the moment. But it seems that changes
will not be dramatic.

On the other side, ITU defines a general framework for the provision of non-
repudiation services in X.813 [ITU-T X.813 1996] similar to ISO/IEC 10181-4. It
defines non-repudiation as “the ability to prevent entities from denying later that
they performed an action”. The non-repudiation framework extends the concepts
of non-repudiation security services as described in X.800 and provides a framework
for the development of these services.

2. DESCRIPTION OF THE GENERAL MPNR PROBLEM

As commerce applications like e-voting, e-bidding, etc. usually involve several par-
ties, we have focused this survey in the multi-party scenario. For identifying the
Multi-Party Non-Repudiation (MPNR) problem, we studied several existing ap-
proaches of multi-party scenarios in related topics such as fair exchange, contract
commitment, etc.

frameworks for open systems: Non-repudiation framework.
5This document revises ISO/IEC 13888-1:1997, which is withdrawn.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 11

2.1 Definitions

Extracted from the different multi-party applications and protocols, let us define
our view of a MPNR scenario.

Definition 2.1. In a general MPNR scenario, n | n > 2 entities agree to use
a non-repudiation protocol for exchanging messages (general or specific purpose)
and collecting evidence of the transactions performed for the exchange of those
messages.

Of course, different topologies are possible (e.g., one-to-many, ring, mesh), but
some of them seem to be more natural than others. For instance sending the same
message to several entities is more related to existing Internet applications than one
entity receiving the same message from different originators. Nevertheless, all the
topologies need to be considered as long as applications exist for them. We should
not forget that there are applications in the collaborative and e-learning areas in
which many to many messages are a reality. For example, in [Asokan et al. 1996] a
simultaneous payment for receipt is presented as an instantiation of a many-to-one
application, and in [Asokan et al. 1998] a many-to-many contract signing protocol
is depicted.

Let us imagine the following scenario which sketches a virtual application for
managing market shares. Several, n, users (or machines) which are market share
holders meet up in order to bid for each other stocks (some users could share one or
several stocks). We can represent the bids as a set of messages Seti = m1, . . . ,mm.
For a user Ui, there are n − 1 entities to which offers from the set can be sent.
The same offer can be submitted to all of them or to a subset of the entities.
Also different offers can be sent to all or any combination of them. Once the
offers are sent, user Ui will wait for a response. This response could be made
individually or could require several recipients gathering for replying an offer. This
is a typical example of a many-to-many application which can be represented by
a binary matrix, in which “1” in the (i, j) position indicates that user Ui sends a
bidding message to user Uj .

Each user Ui may need evidence of receipt of the message sent while receivers may
need evidence of origin of the offer received. Many other multi-party applications
and protocols can be represented using a matrix. For instance, in the case of
the Multi-Party Contract Signing (MPCS) protocol mentioned above, a matrix
in which all elements are “1” except the diagonal represents mathematically the
topology used.

This scenario could be seen as a typical multi-party fair exchange scenario as
described in [Asokan et al. 1996]. Even though general MPNR and multi-party fair
exchange protocols have a common design goal (fairness), several differences can
be found:

- In a fair exchange protocol each entity offers a priori known item (i.e., something
is known about the item a priori but not its precise content) and receives another
item, also known a priori. In a multi-party fair exchange protocol one can imagine
sending an item to one entity and receiving an item from a different one. In non-
repudiation it does not make sense that one entity receives some data and a
different entity sends the corresponding receipt of that data.

ACM Computing Surveys, Vol. V, No. N, 20YY.

12 · Jose A. Onieva et al.

Contract signing protocol

Non-repudiation ...

Fair exchange

Certified mail

Fig. 2. Non-repudiation service

- With a general message M , non-repudiation is more related to a certified e-mail
service in which the receipt has to be sent by the receiver in order to be able to
disclose the message received and obtain the evidence of origin for it. Therefore,
a ring topology is not applicable in a general MPNR service.

- Due to the fact that in a non-repudiation service it is not an exchange of items,
MPNR protocols have to continue and finish even if some parties do not re-
ply. Only parties following the protocol correctly should be able to disclose the
message and obtain evidence of origin for it.

- In some MPNR applications, the message content is previously revealed and
known by the recipients. In these applications it is more important the origin
and occurrence of the transmission, that is, the fair exchange of EOO and EOR.

- There is no exclusion-free property as defined in [González-Deleito and Markow-
itch 2002] in MPNR protocols. Since there is no need for a setup phase to agree
on participants and items, no danger of excluding participants exists.

The reason of these differences is also due to the classification of fair exchange
and non-repudiation as services or applications. Although it seems clear that non-
repudiation is a service 6, sometimes it is referred in the literature as an application
and the authors compare it with fair exchange. Actually fair exchange can also be
considered as a service. While non-repudiation might provide a service to appli-
cations like certified electronic mail, fair exchange can provide service to other
upper-layer applications as well like payment protocols or digital contract signing.
Although non-repudiation should be a security service in this kind of applications,
they can be designed without it (see figure 2). Note that this view is not contrary,
but complementary, to the one provided in [Markowitch et al. 2002].

Other type of applications in which multi-party protocols appear (either for fair
exchange, non-repudiation, contract signing, certified electronic mail or any other
evidence-generating exchange) are those in which the participants play different
roles in the same application. Imagine an electronic shopping application which
involves a customer, a merchant, a credit card company and a delivery company.
Different existing two-party non-repudiation protocols could be selected for pro-
viding a non-repudiation service to this scenario. Nevertheless, several questions,
mainly regarding efficiency, arise. The solution achieved is not optimal for a real
application since the correlation among different parties in a unique transaction is
lost.

6In fact, as mentioned in previous section, it has been standardized as a service.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 13

The ground for focusing on the multi-party problem as a different one comes
from the fact that the solutions to be provided are different. The first step towards
multi-party environments consists of revising the requirements defined in 1.5.

Definition 2.2. Fairness. A multi-party protocol is said to be fair if at the end
of the protocol all honest parties receive what they expect or none of them receive
any valuable information.

It is very important to detail what is valuable information. Most existing def-
initions do not specify the valuable elements and it is not always straightforward
to identify these elements. In a general fair MPNR protocol, the recipients either
already know the message to be received and thus only evidence are considered
valuable elements for the exchange (i.e. they can refuse to run the protocol even if
they get the message and we say the protocol fulfills light fairness), or they must
send a NRR in order to get the message. Thus, in the latter case, instantiating the
definition above, we say that a MPNR protocol is fair if, at the end of the protocol,
either the originator receives NRR and the recipient(s) receive(s) the message and
the corresponding NRO or none of them obtains any of these items.

Note that all the participants must be in the same state at the end of the protocol.
That is, corrupted parties should receive their outputs if and only if the honest
parties also receive them [Lindell 2003].

Definition 2.3. Confidentiality. A multi-party protocol is said to be confidential
if only the aimed honest recipients can disclose the message.

This means that the TTP cannot disclose the message either. Nevertheless,
though it is a must in multi-party protocols that others do not disclose the message,
it is optional whether the TTP is able to do it.

Definition 2.4. Efficiency. A multi-party protocol is said to be efficient if, assum-
ing participating entities of the protocol are honest, the TTP does not intervene.

Different instances of a non-repudiation protocol in which different entities par-
ticipate could make the TTP become a bottleneck. An optimistic protocol in which
an off-line TTP participates only in the case of an exception seems to be the solu-
tion, as we already explained for two-party protocols. Nevertheless, many entities
could be participating in each instance of a multi-party protocol. In this multi-
party environment, even only in case of exception, the TTP needs to act in a light
way such that it does not become a bottleneck.

Definition 2.5. Timeliness. A multi-party protocol is said to respect timeliness
if all honest entities are able to terminate the protocol in a finite amount of time
without losing fairness.

The honest transacting parties may not know the final status of a transaction in
time, and would like to unilaterally bring a transaction to completion at any time
without losing fairness. It should be noted that from the definition of timeliness,
two versions of this property appear:

- Asynchronous timeliness: A multi-party protocol is said to respect asynchronous
timeliness if all honest entities are able to terminate the protocol at any time

ACM Computing Surveys, Vol. V, No. N, 20YY.

14 · Jose A. Onieva et al.

without losing fairness. In this case, there are no deadlines for participants in
the protocol, but a serious practical implication makes it hard to achieve: for this
property to be fulfilled, an infinite state (or at least until evidence expiry date
if it is the case) has to be maintained by the TTP. Otherwise, if responsible for
distributing evidence, the TTP needs to retry till recipients of evidence acknowl-
edge reception. An alternative solution can be to extend the channel reliability
between TTP and users (in this direction).

- Synchronous timeliness: A multi-party protocol is said to respect synchronous
timeliness if all honest entities are able to terminate the protocol in a finite and
known amount of time without losing fairness. In this case, deadlines are used
and the TTP clock is assumed as the reference time (i.e., users’ clocks need to be
synchronized with the TTP’s clock). Though more difficult for users, the TTP
does not need to maintain evidences for long-time periods (stateless TTP).

Definition 2.6. Policy. A MPNR protocol needs a complete non-repudiation pol-
icy that supports the participation of several entities in possible dispute resolution
processes.

As with two entities, this has to define perfectly all the parameters needed by the
service. There is no important distinction in multi-party environment except for
the fact that multiple disputes and agreements can arise among the participants.
The arbiter to judge the dispute needs to be explicitly mentioned in the policy
definition.

2.2 State of the Art and Analysis

The first work that appears in general MPNR problems can be found in [Kre-
mer and Markowitch 2000a; Markowitch and Kremer 2000]. Those papers propose
generalizations of two protocols: one based on the on-line approach [Zhou and
Gollmann 1996] and the other based on an optimistic approach (also known as
with off-line TTP) [Kremer and Markowitch 2000b]. As stated before, other re-
lated works also existed and are still under research in the field of multi-party fair
exchange [Asokan et al. 1996; Franklin and Tsudik 1998; Bao et al. 1999; González-
Deleito and Markowitch 2001; Khill et al. 2001; González-Deleito and Markow-
itch 2002], contract signing [Asokan et al. 1998; Baum-Waidner and Waidner 1998;
Garay and MacKenzie 1999; Baum-Waidner and Waidner 2000; Ferrer-Gomila et al.
2001; Baum-Waidner 2001; Chadha et al. 2004; Ferrer-Gomila et al. 2004] and cer-
tified e-mail [Ateniese et al. 2001; Ferrer-Gomila et al. 2002]. Due to its practicality,
works on the MPNR and Certified Electronic Mail (CEM) use a one-to-many topol-
ogy, whereas multi-party fair exchange and contract signing appears either on mesh
or ring configurations.

2.2.1 Multi-Party Fair Exchange(MPFE). The general optimistic multi-party
fair exchange protocol in [Asokan et al. 1996] is the first work which achieves a
scenario with multiple entities in which non-repudiation evidence needs to be gen-
erated together with the fair exchange of the items. Asokan et al. proposed the
use of a matrix of descriptions as information of the items to be exchanged for
all entities. Depending on the type of items (confidential data, public data and
payment) and number of entities (one-to-many, etc.), the generic service described
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 15

can be instantiated as a particular application; e.g., one-to-many topology in which
confidential data is exchanged by public data corresponds to a reliable certified
broadcast application.

In this way, the basic idea of the generic multi-party fair exchange protocol is
that each party signs the expected global description or local view (i.e., the whole
description matrix) of the exchange and commits to the items he will send to every
other party. If all parties signed the same description matrix, the parties send the
promised items. If someone does not receive what was expected, two-party recovery
procedures are started with the TTP.

Besides, the authors introduced the notion of revocable items (e.g., the payment
could be cancelled by the bank even when the order was already transmitted)
and generatable items (e.g., the bank could order on behalf of one of its clients,
a payment to another client). In this protocol, the TTP can guarantee strong
fairness if the items involved are either all revocable or all generatable, otherwise
weak fairness is achieved.

The resolution process of this protocol, though complete, is not efficient. Having
the TTP observing every exchange between two parties when a problem exists and
if not sufficient, running recovery resolution processes, is not a practical solution
for an application aimed at the Internet.

In [Franklin and Tsudik 1998], the authors also develop a classification of types
of multi-party fair exchange schemes and present new protocols which assume the
presence of a semitrusted neutral party in ring topologies. A malicious semitrusted
neutral party must be unable to cheat as long as the other parties remain honest.
For achieving fairness the protocol makes use of a special mathematical function
f which allows to make checks without revealing content. This is similar to the
verifiable encryption scheme appeared in some approaches [Bao et al. 1999]. The
TTP acts in an in-line manner (i.e., it is involved in every exchange) and does not
learn about the items exchanged as well as the topology (it knows it is a ring but
does not know the sequence).

In [Bao et al. 1999], the authors propose a multi-party fair-exchange protocol
with a ring topology making use of an off-line TTP. In this protocol, no honest
party is left in an unfair situation no matter how maliciously the dishonest par-
ties behave. Nevertheless, some parties could be excluded from the ring in the
exchange (not affecting however fairness). The main design, which uses a veri-
fiable encryption scheme as a tool for commitment, is linear with respect to the
number of rounds (2n rounds) and the TTP needs to contact the originator of the
protocol. This makes efficiency an important issue to be improved. In fact, two
main improvements are proposed for enhancing efficiency; reducing the number of
sequential rounds and avoiding the contact of the TTP with the initiator of the pro-
tocol. In [González-Deleito and Markowitch 2001], the protocol is improved such
that participants only need to trust the TTP (and not the initiator). Moreover,
under certain circumstances, if there are participants excluded from the exchange,
they can prove to an external adjudicator that a problem occurred.

Markowitch tackles the exclusion-freeness property in multi-party fair exchange
protocols one year later in [González-Deleito and Markowitch 2002]. This time, they
demonstrate the exclusion problem in Franklin and Tsudik’s protocol. They provide

ACM Computing Surveys, Vol. V, No. N, 20YY.

16 · Jose A. Onieva et al.

a formal definition of the exclusion-freeness property and propose a multi-party fair
exchange protocol with on-line TTP which respects the strongest definition of the
property defined.

In [Khill et al. 2001], the authors propose a protocol for multi-party fair exchange
with a ring topology. Although it is not optimal, it presents an extensive complexity
study with respect to [Asokan et al. 1996]. The protocol consists of three phases in
which a matrix of elements are exchanged from the initiator to the next party in the
ring (the sequence is predefined). Upon receiving the message, each party checks it
and pulls out the information components destined to it from the matrix. It may
load the next sequenced components into the matrix with regard to the accepted
components at this point. The TTP participates in the exchange in abnormal
cases. It tries to recover from the abnormality by observing and controlling all the
transferred messages. In those cases each message from a party to the next party
is not transmitted directly but relayed by the TTP.

2.2.2 Multi-Party Contract Signing. A particular application of multi-party fair-
exchange protocols is MPCS, although MPCS protocols can also be used to design
multi-party fair exchange protocols when the signed contract is used as evidence
-verifiable commitment- which preserves fairness in the exchange. In [Asokan et al.
1998], the authors propose the first optimistic MPCS for synchronous networks.
Assuming that the TTP is not corrupted, in the all-honest case only two rounds of
communication are needed. In the first round, each party who wishes to sign the
contract broadcasts a signed “promise to sign”. In the second round, each party
who receives all promises from the previous round signs the contract and broadcasts
its real signature. Obviously, this works if all parties wish to sign. If at least one
party does not wish to sign, it will not send the signed promise, and thus no party
will sign in round 2.

If some party cheats, two more rounds are added to the protocol, such that
everybody who has all signed promises from round 1 can get them converted into
a valid contract by the TTP. If the TTP issues an affidavit, it broadcasts it to all
parties in round 4. Thus, each party who did not receive all promises in round 1
waits until round 4. If it receives an affidavit from the TTP, the decision is signed,
otherwise failed. On asynchronous networks, the previous “otherwise” would not
be effective, since a party could not decide whether an affidavit was not sent, or just
not delivered yet. In fact, due to this synchronicity, termination of the protocol is
ensured by the network itself in a fixed number of rounds (four in the all-honest case
and six in the worst case). Using this protocol as a building block, Asokan et al.
designed a generic multi-party fair exchange and a multi-party certified electronic
mail protocol (see next subsection for further reference).

In [Baum-Waidner and Waidner 1998], the first optimistic MPCS for asynchronous
networks is presented. Again, assuming that the TTP is not corrupted, n+4 rounds
of communication and O(n2) messages are needed in the worst case, taking into
account that the number of dishonest parties is not known a priori. It consists
of n + 1 rounds in the all-honest case. In round 1 each party that starts with
sign signs a “promise” to sign the contract and broadcasts this promise. In each
subsequent round each party collects all signatures from the previous round, coun-
tersigns this set of n signatures, and broadcasts them. The result of the (n+1)-nd
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 17

round becomes the real contract. Three additional rounds are needed if the TTP
is contacted.

A party who becomes tired of waiting for some signatures in some round (i.e.,
there is a local timeout) can call the third party. The TTP analyzes the situation
and decides either failed or signed: if the first request received comes from a party
in the first round, then the TTP must decide failed (the TTP cannot know whether
some parties might have started the protocol with reject). If the TTP receives a
request from a party in the last round, then the TTP must decide signed because
other parties might already have the signed contract. Besides, if the TTP receives
multiple requests somewhere in the middle between the first and the last round,
the TTP might have to change the decision from failed to signed.

The problem is that the TTP can do this only if all parties that received failed
before are probably dishonest. Therefore, the TTP needs n + 1 rounds in order to
check this behavior. If dishonest parties call the TTP one after the other starting
with round 1 then first request must be answered with failed, as already explained.
After that, for i >2, the request by party i 7 shows that party i−2 to first party are
all dishonest: party i calling in round i means that it has seen all messages of round
i − 1, because otherwise, party i would have called the TTP already then. Those
include messages from party i − 2 to the first one, which could not exist if those
would have stopped in round i − 2 to the first, as supposed. Thus, whenever the
TTP receives a request for a certain round i (i ≥ 2) such that it has not answered
a request for round i− 1 yet, then it can safely switch from failed to signed (since
parties who previously obtained failed token are clearly dishonest).

As a consequence of the number of rounds, asynchronous timeliness is achieved;
i.e., no deadlines are used and each party can finish the protocol when desired. Us-
ing this protocol as a building block, the authors designed a scheme which provides
fairness to any general secure multi-party function evaluation protocol. These pro-
tocols allow several users to calculate the output of a function f without revealing
to the rest of participants their inputs. With the added fairness, dishonest parties
have no advantage over the honest parties in learning the function outcome (basi-
cally composing this outcome in such a manner that a signed contract protocol is
used for exchanging one of the components needed for learning the other component
which is the real function output).

In [Garay and MacKenzie 1999], the authors construct a general multi-party
optimistic asynchronous contract-singing protocol which requires O(n3) messages
in O(n2) rounds. The protocol is also abuse-free, meaning that at no point can
a participant prove to others that he is capable of choosing whether to validate
or invalidate the contract. This is the first abuse-free optimistic contract-signing
protocol that was developed for n > 2 parties. They also showed a linear lower
bound of n rounds of any n-party optimistic contract signing protocol.

For this purpose, a crypto tool denominated Private Contract Signature (PCS)
is used. Upon receiving a PCS, a party convinces himself of its validity, but cannot
convince anybody else, and he also knows that the TTP appointed by the signatory
can convert it into a regular (self-authenticating) signature. The full formal defini-
tion described in [Garay and MacKenzie 1999] presents invisibility ; i.e., no one can

7i establishes the order of rounds and a party i is the party requesting the TTP in round i.

ACM Computing Surveys, Vol. V, No. N, 20YY.

18 · Jose A. Onieva et al.

determine if a conversion was performed by the original signer or the TTP. This,
of course, allows the TTP to be transparent.

Nevertheless, the more important contribution of this work is not the protocol
itself, which is rather complicated and not optimal, but the theorem presented at
the end of the paper:

Any complete and optimistic asynchronous contract-signing protocol with
n participants requires at least n rounds in an optimistic run.

Describing the theorem, Garay et al. stated that “... for each party Pi out of
n, when it sends a message that can be used (together with other information)
by other entities to obtain a valid contract, as the protocol is fair, it must have
received in a previous round, a message from the rest of participants in order to
be able to get a valid contract too, no matter how others behave (probably with
TTP’s help)”. By an inductive argument, they showed the number of rounds is at
least n.

We found another argument which, perhaps, better explains the theorem stated
above from a more practical point of view. Bearing in mind the technical require-
ments for fulfillment of fairness in an asynchronous contract signing protocol, we
base our argument on the number of rounds a TTP needs to determine whether
a party is misbehaving when requesting resolution (i.e., it requests cancel to the
TTP but continues the main protocol):

Theorem 2.7. The TTP cannot determine whether a party is misbehaving un-
til round = roundcurrent + 1, since the TTP needs to wait to the next round to
see whether this entity cheated and continued the protocol. That means, if n − 1
dishonest parties exist in the worst case, and each of them requests TTP’s cancel
sub-protocol in a different round, n rounds are the minimum required to satisfy
fairness in an asynchronous optimistic contract signing protocol.

This is the argument used by other solutions to reduce the number of rounds
and steps when the number of dishonest parties t, is limited and known a pri-
ori. In [Baum-Waidner 2001], by assuming t, the protocols presented achieve an
improvement in comparison with the state of the art. The number of rounds is
reduced from O(t) to O(1) for all n ≥ 2t + 1, and for n < 2t + 1, it grows slowly
compared with the number of rounds in O(t): If t ≈ k

k+1n then the number of
rounds ≈ 2k. Nevertheless, in the worst case (t = n− 1), the number of rounds is
(obviously) still t + 2 = n + 1. From a theoretical point of view, the main unreal-
istic assumption of this work is assuming a known a priori set of dishonest parties.
Anyhow, from a practical point of view, these could be protocols with a determined
tolerance which could work in real applications in which parties assume the risk on
the limited number of dishonest parties (specially in relative trust environments).
Furthermore, these protocols could be used in combination with others, such that
they are used when at least 1/2 of the participating entities have previously demon-
strated their good behavior, and thus, taking advantage of its better efficiency. As
these protocols use a threshold, we will refer to them in the rest of this paper as
threshold protocols.

2.2.3 Composition of Secure Multi-Party Protocols. When research in multi-
party protocols is conducted, there is another important issue to be taken into
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 19

account: composition of secure multi-party protocols. In [Lindell 2003], it is demon-
strated that obtaining security under (even rather weak notions of) composition can
be strictly harder than the stand-alone execution of the protocols. That is, inter-
actions between different executions of the same multi-party protocol more often
reduce security. MPNR protocols themselves need to be studied to see how differ-
ent executions interact with each other and how it affects security. For instance,
MPNR protocols might make use of multi-party primitives as broadcasts, and it
has been demonstrated that it is impossible to achieve broadcast if a third or more
of the parties are corrupted. And this is under parallel self-composition, which is
weaker than the concurrent self-composition we foresee for MPNR protocols.

A protocol is said to be self-composed if it remains secure when it alone is executed
many times in a network. It is parallel self-composed if all executions begin at
the same time and proceed at the same rate (i.e., in a synchronous fashion). It
is concurrent self-composed if several executions of the same protocol start and
finish in an arbitrary way or determined by the adversary (i.e., in an asynchronous
fashion).

Nevertheless, composition of secure multi-party protocols is a large area of re-
search out of the scope of this paper. Furthermore, we can base the design of MPNR
protocols in the fact that Universal Composition (UC) protocols can be achieved if
a reference string is used in the composition (i.e. a setup phase). Thus, we assume
this setup phase for allowing the composition of these multi-party protocols, even
though we do not raise this issue any more. As an example, in this setup phase,
transaction identifiers (or labels) have to be perfectly defined in order to distinguish
among different executions of the same protocol and participants must be aware
of not being engaged in an exchange in which it has been already participating.
Details for protocols for UC realizing any multi-party functionality in the common
reference string model can be found in Chapter 4 in [Lindell 2003].

Remark 2.8. Including the common reference model and, hence, a setup phase
for secure composition of MPNR protocols, produce the exclusion problem. Nev-
ertheless, in MPNR protocols there is no exchange of a priori known items or
promises. That is, the recipient does not know from what it has been excluded
and therefore, the exclusion-freeness decreases its importance as in fair exchange
or contract signing protocols.

2.3 Description of the 1-N MPNR Problem

Several applications, like email and multicast of content in general, present a 1-
N topology. In some of these applications, the originator sends a message which
should not be revealed unless the recipients confirmed their reception. Let us define
what is our view of a 1-N MPNR scenario:

Definition 2.9. A 1-N MPNR application is an instantiation of the general MPNR
problem; one entity O is willing to send a (several) message(s) to a set of recipients
R such that a subset S ⊆ R obtain the message and evidence of origin if and only
if they sent evidence of receipt.

As previously mentioned, Kremer and Markowitch proposed generalizations of
two protocols: one based on the on-line approach and the other based on an opti-
mistic approach (also known as with off-line TTP). For both of them, the originator

ACM Computing Surveys, Vol. V, No. N, 20YY.

20 · Jose A. Onieva et al.

sends an initial commitment (message encrypted with key k) and once a group of
recipients reply to this commitment it sends the message to which it was commit-
ted to (i.e. it sends the key k which allows the recipients to decipher the expected
message) and waits for evidence of receipt. As the same message is distributed,
only one key needs to be distributed to those recipients which replied, and a group
encryption scheme based on the Chinese Reminder Theorem is used for this pur-
pose [Chiou and Chen 1989].

The on-line based approach uses the TTP in a light-weight manner to distribute
the key for each execution of the protocol. In this way, the originator submits the
key together with evidence of submission and the TTP publishes this key along
with its final signature needed by all entities to complete their evidence. As ex-
plained before, only those who behaved correctly can decipher the key and, thus,
the message.

In the optimistic approach, and if no exception arises, the TTP does not take
part. Otherwise, entities can recover the protocol if needed after a deadline fixed
by the originator with respect to the TTP’s clock. The originator will contact
the TTP when not receiving final evidence from recipients to which it sent the
key. Recipients will contact the TTP when not receiving the key while having sent
evidence of receipt of the commitment. Once the TTP is contacted for resolving
the protocol, and assuming it happens after the fixed deadline, the TTP needs to
access an originator database in which recipients who replied are marked. The
originator needs to be notified of TTP’s successful access and stop immediately the
main protocol. Of course, the authors assume that the channel between originator
and TTP is bidirectionally resilient. If TTP receives all necessary information, it
sends evidence of confirmation to all entities, which substitute evidence not received
(maybe due to a channel failure) by participating entities. They showed that the
improvement with respect to n parallel executions of a two-party non-repudiation
protocol is in terms of number of messages as well as number of needed digital
signatures.

For multi-party certified e-mail applications, different protocols can also be found.
Asokan et al. instantiated (and optimized some steps) their generic multi-party fair
exchange explained in the previous section to design a reliable broadcast applica-
tion. Besides, Asokan et. al presented an optimistic multi-party certified e-mail pro-
tocol as an application of an MPCS protocol presented in [Asokan et al. 1998]. That
is, the MPCS protocol is used as a building block. The block can be asynchronous
or synchronous depending on the type of network the certified email application is
running on. It follows the following schema:

(1) The sender prepares the message M and tid (a transaction id) to be sent to
all the recipients encrypting it with the TTP’s public key. This cipher =
ETTP (M, tid) turns out to be a contract to be signed by all parties.

(2) All participants sign the contract using the MPCS building block and tid as the
contract signing transaction identifier. Only if the final decision of the signing
process is signed the protocol continues. The signed contract will be the receipt
for the sender.

(3) The sender sends to all the recipients the cleartext mail M . If any of the
recipients does not receive this message, it contacts the TTP sending the signed

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 21

O

R3

R2

R1

1

1

1

2

2

3

3

O

TTP

Ri

1'

3'
1'

3'

 Cancel
Finish

set_cancel={ }
set_finished={ }
receipt_evidences={ }

Fig. 3. Ferrer et. al solution for multi-party certified email

contract (tid, cipher). The TTP checks the consistency of tid after decrypting
cipher. If the contract is valid and decryption succeeds then the TTP signs the
cleartext M for the recipient, otherwise it signs a null message.

In the original paper, it can be found the proof based on demonstrating two
properties: no information is leaked on M unless the sender has a receipt. And the
sender cannot get a receipt without revealing M . In this work, Asokan et al. also
define other possible types of multi-party certified e-mail applications with many-
to-one and mesh topologies. All of them can be solved following the same schema
described above.

The only apparent difference with respect to the general MPNR protocols de-
scribed in the previous section is that, as the authors indicated, honest recipients
should receive the message even if some dishonest parties do not follow the protocol
correctly and thus the MPCS block outputs failed. The main privacy problem of
this solution is that since it uses a MPCS as a building block, each recipient can
identify the rest of addressees in the protocol.

With this in mind, Ferrer et al. presented a realistic protocol for multi-party cer-
tified electronic mail in [Ferrer-Gomila et al. 2002] which can be seen as an instan-
tiation of a MPNR service. If we compare this protocol with Kremer’s optimistic
proposition already discussed, the former is more efficient (only three steps in the
main exchange which will be the only one executed in the majority of executions)
and solves some of the problems found in the latter one.

In this protocol (see figure 3), the sender commits itself to the message, and
sends the necessary information (encrypted with the TTP’s public key) to open
this commitment together with evidence of origin. Then, honest recipients send
evidence of receipt and finally the sender opens the commitment and sends the
required evidence to those recipients who replied. With respect to the MPNR
properties, the protocol is efficient, can be timely terminated thanks to the existence
of two sub-protocols (cancel and finish) and defines a sufficient dispute resolution
process. Besides, the TTP behavior is verifiable (unless colluding with other entity,
the TTP cannot misbehave without being discovered).

ACM Computing Surveys, Vol. V, No. N, 20YY.

22 · Jose A. Onieva et al.

If the sender does not get some receipts from some participants, it initiates a
cancel sub-protocol in which those recipients are included in a cancelled set if they
have not finished the protocol yet. On the other hand, if some recipients do not
receive step 3 of the main exchange protocol, they contact the TTP in order to
finish it, and those who have not been cancelled yet by the sender, receive the key
to open the commitment and therefore, obtain the cleartext message. Otherwise,
they receive a cancel token. In this finish sub-protocol, recipients need to send their
receipts to the TTP, which will store and forward them to the sender if required.
A weakness can be found in the dispute resolution process: the arbiter needs to
contact both disputing parties in order to be able to maintain fairness, i.e., an entity
and its evidence could not be sufficient to prove its claim.

We introduce tables I and II in order to summarize the different advantages,
properties, disadvantages and functionalities of the fair protocols presented so far,
as well as our own solutions.

3. MPNR PROTOCOL WITH DIFFERENT MESSAGES

In the existing MPNR solutions a message can be multicasted to several recipients.
In that way no personal and confidential messages can be sent to these parties
without loss of privacy. In this section we review the new solutions 8.

3.1 On-line MPNR Protocol for Distribution of Several Messages

Sending (same or different) messages to several recipients could mean a single trans-
action in a specific application. Therefore, it would be better to store the same key
and evidence in the TTP record for every protocol run. In those types of applica-
tions, the storage and computation requirements of the TTP are reduced and it will
be easy to distinguish between different transactions, regardless of how many enti-
ties are involved. An example application which can get advantage of these kind of
security protocols is the notification systems. These systems notify different users
with customized messages and need evidence of having notified them (e.g., a paper
acceptance notification system for scientific conferences). In this type of applica-
tions we will distinguish between whether the recipients already know or not the
content of the message to be received (see subsection 3.3 for further details).

Some useful notation in the protocol description is as follows:

- O : an originator
- R : set of intended recipients
- R′ : subset of R that replied to O with the evidence of receipt
- Mi : message being sent from O to a recipient Ri ∈ R

- ni : random value generated by O
- vi = EuRi

(ni) : encryption of ni with Ri’s public key
- k : key being selected by O
- ki = k xor ni : a key for Ri

- ci = Eki(Mi) : encrypted message for Ri with key ki

8The work in this section has been partially published in [Onieva et al. 2003] and [Onieva et al.

2004].

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 23

Protocols App. Properties Advantages Drawbacks Topology

Asokan’96 MPFE optimistic,
generic ser-
vice, revocable
and generatable
items

asynchronous
timeliness, NR
evidence gener-
ated, strong and
weak fairness

not efficient N-N

FraTsu’98 MPFE in-line TTP semitrusted neu-
tral party, confi-
dentiality

no exclusion-free ring

Bao’99 MPFE off-line TTP, ver-
ifiable encryption
scheme

asynchronous
timeliness

no exclusion-free,
not efficient

ring

GDM’02 MPFE on-line TTP exclusion-free ring

Asokan’98 MPCS optimistic, syn-
chronous

4 rounds synchronous
timeliness

ring

BW’98 MPCS optimistic, asyn-
chronous

asynchronous
timeliness

n+4 rounds,
O(n2) messages

ring

Garay’99 MPCS optimistic, asyn-
chronous, PCS
crypto tool

timeliness, trans-
parent TTP,
abuse-free

O(n2) rounds,
O(n3) messages

ring

BW’01 MPCS optimistic, asyn-
chronous, thresh-
old

optimal efficiency ring

KM’00 MPNR group encryption
scheme

light TTP, one
key

same message,
on-line TTP

1-N

MK’00 MPNR group encryption
scheme

off-line TTP, one
key

synchronous
timeliness, same
message

1-N

Asokan’98 CEM based on
MPCS protocol,
a/synchronous

optimistic no privacy 1-N

Ferrer’02 CEM optimistic, effi-
cient, timeliness,
verifiable TTP

arbitrator needs
to contact disput-
ing parties

1-N

Table I. Multi-party protocols’ properties summary

- li = h(O,Ri, TTP, h(ci), h(k)) : label 9 of message Mi

- L′ : labels of all the messages sent to R′

- t : a timeout chosen by O, before which the TTP has to publish some information

- ER′(k) : a group encryption scheme that encrypts k for the group R′

- EOOi = SO(feoo, Ri, TTP, li, t, vi, uRi
, ci) : evidence of origin for Ri

- EORi = SRi(feor,O, TTP, li, t, vi, uRi , ci) : evidence of receipt from Ri

9There might be a potential attack [Gürgens and Rudolph 2002] when the label l is constructed
as h(m, k) in the early literature, so this label is unique in each run and verifiable by any party.

Note that the labels can be computed off-line.

ACM Computing Surveys, Vol. V, No. N, 20YY.

24 · Jose A. Onieva et al.

Protocols App. Properties Advantages Drawbacks Topology

OZCL’03 MPNR different messages
for different recip-
ients

privacy,
lightweight TTP

on-line TTP 1-N

OZL’04 MPNR optimistic, dif-
ferent messages
for different
recipients

privacy, trans-
parent TTP,
asynchronous
timeliness, effi-
cient

1-N

ZOL’05 CEM optimistic, no
split of message
in delivery

asynchronous
timeliness, very
efficient, recip-
ient collusion
resistance

more TTP over-
head when TTP
involved

1-N

ZOL’06 MPCS optimistic,
threshold can-
cel for weak
asynchronous
timeliness

abuse free, very
efficient, 3 rounds
and 3(n−1) steps

in-and-out

Table II. Our solutions’ properties summary

- Subk = SO(fsub,R′, L′, t, ER′(k)) : evidence of submission of the key to the
TTP

- Conk = STTP (fcon,O,R′, L′, t, ER′(k)) : evidence of confirmation of the key by
the TTP

In this extension, the use of the same key for all users creates a new problem that
did not appear in Kremer’s online multi-party non-repudiation protocol. Because
messages are different, when the same key k is used for encryption, and after the
key k is published, any recipient will be able to read the messages addressed to
the other recipients (by eavesdropping the messages that are transmitted between
O and R). This problem is solved in this extended multi-party non-repudiation
protocol, introducing some extra cost for the extended functionality over [Kremer
and Markowitch 2000a].

3.1.1 Protocol. Here, we describe the protocol (see figure 4, where a dotted line
indicates a fetch operation).

1. O → Ri : feoo, Ri, TTP, li, h(k), t, uRi
, vi, ci, EOOi for each Ri ∈ R

2. Ri → O : feor,O, li, EORi where Ri ∈ R
3. O → TTP : fsub,R′, L′, t, ER′(k), Subk

4. O ↔ TTP : fcon,O,R′, L′, ER′(k), Conk

5. R′
i ↔ TTP : fcon,O,R′, L′, ER′(k), Conk where R′

i ∈ R′

The protocol works in the following way.

Step 1: O sends to every Ri evidence of origin corresponding to the encrypted
message ci, together with vi. In this way, O distributes |R| messages in a batch
operation and each Ri gets the encrypted message as well as ni. O selects the
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 25

O

TTP

R3

R2

R1

5

1

1

1

2

2
3

4

5

Fig. 4. Protocol with different messages

intended public key uRi being used in the encryption of ni. If Ri disagrees (i.e.,
its authentication digital certificate has expired or been revoked), it should stop
the protocol at this step. There is no breach of fairness if the protocol stops at
step 1 because ci cannot be obtained without key k, and it cannot be derived from
message 1.

Step 2: Some entities (or all of them) send evidence of receipt of ci back to
O after checking evidence and labels. Again, there is no breach of fairness if the
protocol stops.

Step 3: O sends k and Subk to the TTP in exchange for Conk. The key k is
encrypted using a group encryption scheme where the group of users is R′. Hence,
only those entities belonging to R′ will be able to decrypt and extract the key.
Alike, O will obtain evidence only for the recipients included in the set R′ that is
submitted to the TTP. Note that, in this way, O can exclude some recipients which
replied, but fairness is maintained.

Before confirming the key, the TTP checks that:

- |R′| = |L′| holds
- current time < t

Step 4: O fetches Conk from the TTP and saves it as evidence to prove that k
is available to R′.

Step 5: Each Ri fetches ER′(k) and Conk from the TTP. They will obtain ki by
computing k xor ni. Also, they save Conk as evidence to prove that k originated
from O.

At the end of the protocol, if successful, the participants get the following evi-
dence:

- NRO for honest recipient Ri: EOOi, Conk

- NRR for originator O: EORi, Conk for all honest recipients i ∈ R′

Even though O can send a different deadline t, this is not an interesting option
for it. This behavior will not affect fairness, since Conk will not match with the
rest of evidence obtained; i.e., no party will obtain valid evidence and the recipients
could learn the message.

ACM Computing Surveys, Vol. V, No. N, 20YY.

26 · Jose A. Onieva et al.

3.1.2 Dispute Resolution. Two kinds of disputes can arise: repudiation of origin
and repudiation of receipt. Repudiation of origin arises when a recipient Ri claims
having received a message Mi from an originator O who denies having sent it.
Repudiation of receipt arises when the originator O claims having sent a message
Mi to a recipient Ri who denies having received it.

Repudiation of Origin. If O denies sending Mi, Ri can present evidence EOOi

and Conk plus (TTP, t, uRi
, vi, ci, ni, k, ER′(k),Mi, R

′, L′) to the arbitrator. The
arbitrator will check:

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki(Mi)
- li = h(O,Ri, TTP, h(ci), h(k)) ∧ li ∈ L′

- O’s signature EOOi

- TTP’s signature Conk

Repudiation of Receipt. If Ri denies receiving Mi, O can present evidence
EORi and Conk plus (TTP, t, uRi

, vi, ci, ni, k, ER′(k),Mi, R
′, L′) to the arbitrator.

The arbitrator will check:

- Ri ∈ R′

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki
(Mi)

- li = h(O,Ri, TTP, h(ci), h(k)) ∧ li ∈ L′

- Ri’s signature EORi

- TTP’s signature Conk

3.1.3 Efficiency. This protocol uses an on-line TTP which intervenes in every
execution in a light-weight manner. We compare this approach with the one where
an n-instance of a two-party protocol [Zhou and Gollmann 1996] is used in order to
send messages to the intended parties. The efficiency of the three principal entities
participating in the protocol is analyzed, using an operation comparison. For this
comparison we will use the following basic operations:

- signature generation and verification
- generation of random numbers
- asymmetric encryption and decryption
- store and fetch operation

Depending on which algorithm is chosen for each of these operations, the bit com-
plexity (as well as the bandwidth requirements) of each of the participating entities
will change, although the relation going between them remains. Furthermore, the
efficiency analysis also depends on how the group encryption primitive is used along
the description of the protocol implemented. We will assume the complexity for a
group encryption for n parties is equivalent to the cost of n asymmetric encryption
operations. We denote:
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 27

|R| = N

|R′| = N ′ (with N ′ ≤ N)
≈ roughly equal
> or < greater or smaller
� or � much greater or smaller

n-instanced two-party New approach

Evidence of origin EOOi = EOOi

N signatures N signatures
Generation of ki ≈ Generation of ni plus k
Evidence of submission Subki � Subk

N’ signatures 1 signature
Encrypted key EuRi

(ki) � Encrypted key ER′(k) plus EuRi
(ni)

N’ asymmetric encryptions N’+N asymmetric encryptions
N fetches operations of Conki � One fetch operation of Conk

Table III. O’s computation complexity

n-instanced two-party New approach

Evidence of receipt EORi = EORi

Fetch ki and Conki = Fetch k and Conk

Obtain ki < Obtain k plus ni

Decrypts EuRi
(ki) Decrypt EuRi

(k) Decrypt EuRi
(ni)

Table IV. R′
is computation complexity

n-instanced two-party New approach

Store N’ keys � Store only one key
Generation of N’ evidences Conki � Generation of only one evidence

Conk

Table V. TTP’s computation complexity

Hence we can see in table V the TTP’s efficiency is improved when it is generalized
to multiple entities. Since communicating entities will usually pay for the TTP
services, a more efficient and cheaper TTP service is achieved. In addition, we can
see in tables III and IV that O’s efficiency is improved too, while Ri’s is slightly
increased. Furthermore, the asymmetric encryption of ni can be prepared off-line
but, on the other hand, the fetch operations must be performed during the protocol
run.

ACM Computing Surveys, Vol. V, No. N, 20YY.

28 · Jose A. Onieva et al.

3.2 An Optimistic MPNR Protocol for Exchange of Different Messages

There is an optimistic approach in non-repudiation protocols where the entities are
likely to behave honestly, thus giving priority to the main protocol and running
sub-protocols only in case that an exception arises. Here we present an optimistic
multi-party non-repudiation protocol based on [Ferrer-Gomila et al. 2002] 10, and
use the same solution described in the previous section for the privacy of different
messages.

Some additional notation in this protocol description is as follows:

- R′′ = R − R′ : a subset of R (in plaintext) with which O wants to cancel the
exchange

- R′′ finished : a subset of R′′ that have finished the exchange with the finish
sub-protocol

- R′′ cancelled = R′′−R′′ finished : a subset of R′′ with which the exchange has
been cancelled by the TTP

- l = h(M1,M2, .., k) : label 11 that identifies the protocol run computed as the
hash outcome of the concatenation of every encrypted message plus the key k

- kT = EuT T P
(k) : key k encrypted with the TTP’s public key

- EOOi = SO(feoo, Ri, TTP, kT , l, vi, uRi
, h(ci)) : evidence of origin for Ri

- EORi = SRi
(feor,O, TTP, kT , l, vi, uRi

, h(ci)) : evidence of receipt from each
Ri

- Subk = SO(fsub, R′, l, k) : evidence of submission of the key to recipients
- Cancelreq = SO(TTP, R′′, l) : evidence of request of cancellation issued by the

originator to the TTP
- CancelO = STTP (O, l, R′′, R′′ cancelled, Cancelreq) : evidence of cancellation

issued by the TTP to the originator
- CancelRi

= STTP (Ri, l, EORi, Cancelreq) : evidence of cancellation issued by
the TTP to Ri

- Conk = STTP (Ri, l, k) : confirmation evidence of k issued by the TTP

3.2.1 Protocol. The protocol consists of a main protocol (which will be the
only one executed by the entities in the normal situation) and two sub-protocols:
cancel and finish (see figure 5). The TTP is only involved in the sub-protocols
in case of any participant’s misbehavior or channel failure between the originator
and the recipients. Any participant can initiate the corresponding sub-protocols to
terminate a protocol run at any time without loss of fairness.

The main protocol executed by the final entities is:

1. O → Ri : feoo, Ri, TTP, kT , l, vi, uRi , ci, EOOi for each Ri ∈ R
2. Ri → O : feor,O, l, EORi where Ri ∈ R
3. O ⇒ R′ : fsub, l, ER′(k), Subk

10The protocol [Ferrer-Gomila et al. 2002] has some security errors as being identified in [Zhou

2004]. Those problems have been corrected in the design of this new protocol.
11Note that with the reduction to 3 steps in the main protocol, the attack proposed in [Gürgens

and Rudolph 2002] does not work in this approach.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 29

O

R3

R2

R1

1

1

1

2

2

3

3

Main
protocol

TTP

3'

O Ri

1' 1'
2'

2'

Cancel
Finish

Fig. 5. Optimistic protocol with different messages

In step 1, the originator sends to each recipient its message encrypted with ki. A
recipient can derive ki from k and a random number ni which are also sent in this
step (in a confidential way). Note that the TTP is included in this step, thus there
is no confusion about which TTP to use in case they have to launch any of the
sub-protocols. The originator picks each receiver’s public key. If any recipient does
not want to use such a key (e.g., the correspondent public key certificate has been
revoked), then it stops the protocol. Otherwise, after verifying the data obtained,
the recipient sends to the originator evidence of receipt at step 2, and the originator
sends to the set of recipients who replied after a reasonable amount of time at step
3, the key and evidence of submission of that key, as a second part of evidence of
origin.

If O did not receive a correct message 2 from some of the recipients R′′, O may
initiate the following cancel sub-protocol:

1′. O → TTP : TTP, R′′, l, Cancelreq

2′. TTP FOR (all Ri ∈ R′′)
IF (Ri ∈ R′′ finished) THEN retrieves EORi

ELSE appends Ri into R′′ cancelled
3′. TTP → O : <all retrieved EORi >, R′′ cancelled, CancelO

In this case, the originator communicates the TTP its intention of revoking the
protocol with entities contained in R′′ and for the protocol run labelled l. After
verifying O’s cancel request, the TTP checks which entities previously resolved
the protocol and retrieves their proofs of receipt. The TTP generates evidence of
cancellation for the rest of entities and includes everything in a message destined to
the originator. No information about the message, keys and EOO is sent as [Ferrer-
Gomila et al. 2002] does because a well-defined label for indexing purposes on the
TTP side is used.

If some recipient Ri did not receive message 3, Ri may initiate the following finish
ACM Computing Surveys, Vol. V, No. N, 20YY.

30 · Jose A. Onieva et al.

sub-protocol:

1′. Ri → TTP : TTP, kT , l, vi, uRi , h(ci), EOOi, EORi

2′. TTP → Ri : IF (Ri ∈ R′′ cancelled) THEN Ri, l, R
′′, Cancelreq, CancelRi

ELSE {Ri, l, EuRi
(k), Conk AND

appends Ri into R′′ finished and stores EORi}

The recipient sends to the TTP all the information that it has already got from
the originator along with its evidence of receipt. If this entity does not belong
to the group of entities with which the originator has cancelled the exchange, the
TTP verifies all the information (digital signatures) and decrypts kT , obtaining
the key for the recipient. It also stores EORi. Note that if the protocol has been
cancelled, it should be impossible for the recipient to cheat the TTP in a way that
the TTP reveals the key k for that protocol run. For such a reason, the TTP
must verify O’s signature in the first step and check that l and kT provided by
the recipient fits with the information contained in EOOi. This becomes above
all important when confidentiality should be provided, since it prevents using the
TTP as a decryption oracle (e.g., a recipient sending in other execution message
1′ trying to get kT decrypted). It also avoids replay attacks as discovered in some
optimistic protocols [Shao et al. 2005].

Otherwise, the TTP sends a cancellation evidence to the recipient such that the
latter can easily demonstrate to an arbitrator that the exchange was cancelled in
case a dispute arises. This evidence includes the request of cancellation, such that
the TTP’s behavior is verifiable while the TTP need not to store all the request
evidences from the originator.

Note that the originator has no interest in sending a subset R′′ 6= R′′ when request-
ing to the TTP for cancellation. If R′′⊃ R′′, then O will cancel the exchange with
those Ri ∈R′′ −R′′ that have replied with EORi. If R′′⊂ R′′, then Ri ∈ R′′− R′′

may invoke the finish sub-protocol to get the key k but O will not obtain EORi

from the TTP at the above cancel sub-protocol.
At the end of the protocol, if successful, the participants get the following evi-

dence:

- NRO for honest recipient i: EOOi, Subk or Conk

- NRR for originator O: EORi for all honest recipients i ∈ R′

3.2.2 Dispute Resolution. As we have mentioned, two kinds of disputes can
arise. Here we further discuss the rules for their resolution.

Repudiation of Origin. If O denies sending Mi, Ri can present evidence EOOi

and Subk (or Conk) plus (TTP, l, uRi
, vi, ci, ni, k, kT ,Mi) to the arbitrator. The

arbitrator will check:

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki(Mi)
- O’s signature on EOOi

- O’s signature on Subk, or TTP’s signature on Conk

- Ri is in the signed token Conk or Ri ∈ R′ as signed in Subk

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 31

Repudiation of Receipt. If Ri denies receiving Mi, O can present evidence
EORi plus (TTP, l, uRi

, vi, ci, ni, k, kT ,Mi) and (R′′, R′′ cancelled, CancelO) if it
has. The arbitrator will check:

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki(Mi)

- Ri’s signature on EORi

- (TTP’s signature on CancelO) ∧ (Ri /∈ R′′ cancelled)

O will win the dispute if all the above checks are positive. If all the checks,
but the last, are positive and O cannot present evidence CancelO, the arbitrator
must further interrogate Ri. If the latter cannot present CancelRi

(or this token
is not properly constructed including Cancelreq from O), O also wins the dispute.
Otherwise, Ri can repudiate having received the message Mi.

We can also see that evidence provided by the TTP is self-contained, that is, the
TTP need not to be contacted in case a dispute arises regarding the occurrence or
not of the cancel sub-protocol launched by O. Thus, the TTP is efficiently verifiable.
For instance, if the TTP cheats and distributes evidence of cancellation to Ri when
O did not cancel the protocol for it, TTP’s misbehavior will be visible (either the
cancellation token will not be properly constructed with O’s evidence of request
embedded or it will reveal TTP’s misconduct since Ri /∈ R′′). Additionally, it is
important to know that the adjudicator does not need to check that kT = EuT T P

(k)
holds.

3.2.3 Efficiency. This protocol is very efficient in the case of a good behavior
of the participating entities. In fact, three steps is the minimum number of steps
that could be reached without breaking fairness in non-repudiation protocols. Even
with multiple recipients for exchange of different messages, it manages to use only
one key for evidence distribution, thus decreasing the computation and verification
requirements for the originator and the TTP. For this new feature, public key
encryption and decryption of temporal random numbers are the main extra cost
added.

It is straightforward to see that this protocol is more efficient than any com-
bination of two-party protocols, since it permits to send different messages in a
confidential way to multiple entities as well as to cancel the protocol for a group of
entities R′′ in only one run of the cancel sub-protocol.

In addition, this protocol achieves asynchronous timeliness, because each entity
can terminate, if needed, the protocol at any time at their own discretion while
maintaining fairness. Nevertheless, asynchronous timeliness, though desirable for
users, augments the requirements on the communication channel between the TTP
and users. With the model assumed, the TTP could setup an evidence server (e.g.,
FTP server) such that users participating in the protocol can access (only with the
read permission) and retrieve evidence. By policy, there must exist a deadline after
which evidence cannot be retrieved. (This deadline can match evidence validity
depending on the TTP’s storage capacity.) With this transformation the protocol
is adapted with respect to timeliness in a similar way as the on-line version is.

ACM Computing Surveys, Vol. V, No. N, 20YY.

32 · Jose A. Onieva et al.

It seems to us very important to compare this off-line solution with that proposed
by Markowitch et. al [Markowitch and Kremer 2000], even though the latter one
did not address multiple messages. On the other hand, this is the only one we
can compare with as an off-line multi-party non-repudiation protocol. Since the
protocol has already been briefly described in the previous section, we present here
several tables to make the comparison straightforward. For efficiency comparisons,
the following measurement units have been taken into account 12

- Public key operations (containing encryption and decryption as well as digital
signature and verification).

- Number of items in the storage.
- Number of steps as the number of messages which need to be sent over the

network.
- P as the number of recipients which need to contact the TTP for help and

succeed.
- N = |R| as the number of participating recipients.

New approach Markowitch’s

1.Number of steps in main protocol 3 4
2.Number of steps in sub-protocol 2 (finish) 2 (if recovered or early)

2 (cancel) 4 (if not recovered yet)

3.Timeliness Async Sync
4.Items to be stored in the TTP P+1 1

5.Additional interrogation needed in
the dispute resolution process Yes No

6.TTP network access (reliability
in the inverse direction) No Yes

7.Risk of unfairness No Yes (O must stop main protocol)
8.Transparency Yes No

Table VI. General off-line solution comparison

In table VI, we can observe that generally and when possible, this protocol im-
proves Markowitch’s version. Note that, for instance, it is not possible to reduce
the number of items the TTP needs to store as a consequence of being different
messages and, thus, different evidence of receipt (since the transparency property
for O is maintained). This storage capacity request could be easily avoided by al-
lowing the TTP to issue an affidavit for the finished entities, but then, transparency
would be lost. There is an improvement in the number of steps needed in the main
protocol, which fortunately will be the most frequently used, but the cost is the
need of rarely having to interrogate an additional entity in case of disputes.

12When several actions are possible, we consider the worst case.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 33

New approach Markowitch’s

1.O’s main protocol 4+2P+N 4+2P
2.Ri’s main protocol 3 4
3.O’s cancel/recovery protocol 2+P (cancel) 1 (recovery)
4.Ri’s finish protocol 2 2
5.TTP’s cancel protocol 2 (once) -
6.TTP’s finish protocol 5 5

Table VII. Public key operations comparison

In table VII, we can observe how, in general, this protocol seems to perform worse.
But if we analyze the table, we will discover that this is due to the new functionality
introduced and thus, unavoidable. Specifically, operations of O’s main protocol are
augmented in N because the number of different messages to be sent. For the same
reason mentioned in previous paragraph, O needs to verify P different evidence of
receipt from honest entities which contacted the TTP for finishing the protocol on
time. For the rest of steps, both protocols perform in a similar way.

3.3 Fairness vs. Collusion

As it has been introduced in this paper, there exist different levels of fairness. This
protocol provides two different levels depending on the initial assumptions and thus,
depending on these assumptions the applications which will make use of them vary.

In the description of the previous protocols we assume that no collusion is possible
between recipients. This will preserve a strong fairness property and applications
benefited of these kind of protocols can be of any type.

Nevertheless, Ri could get ci in the initial steps of the protocol and quit. Then,
colluding with any other party and getting the unique key k, it could decrypt ci

without providing any evidence of receipt. Note that this issue is very difficult to
solve as it is not possible to prevent one (semi) honest entity from sharing a secret
once it decrypts it. However, it is also important to note that when a recipient
misbehaves and colludes with a (semi) honest recipient in order to get the key and
thus (only) the message intended to him, it will not in any case obtain evidence
of origin, unless the originator obtains evidence of receipt. This is what has been
defined as light fairness.

There are multiple applications which only need light fairness in their transac-
tions. A common feature in these applications is that it is more important the
exchange of evidence than the message content itself. That is, it is critical that
both or none of the entities obtain evidence. For instance, some notification sys-
tems only need light fairness. This happens when the message itself is known by
the recipient (e.g. birthday certificate) but in the notification, the receiver wants to
be able to demonstrate to a third party its origin (e.g. official administration office)
and the originator wants to be able to demonstrate if necessary that the message
was indeed delivered to the intended receiver.

ACM Computing Surveys, Vol. V, No. N, 20YY.

34 · Jose A. Onieva et al.

4. APPLICATION: EXTENSIONS TO OPTIMISTIC FAIR CEM

In this section we analyze and provide extensions to a fast and simple optimistic
fair CEM protocol [Micali 2003] for achieving timeliness and multi-party fair ex-
change 13. Firstly, we briefly describe Micali’s optimistic protocol for CEM.

4.1 A Protocol for Fair CEM with Deadline Time

Although Micali explained different fair CEM protocols in [Micali 2003], we describe
here the most complete one that supports confidentiality, fairness and synchronous
timeliness. Because it is an optimistic protocol, if both parties behave honestly, the
TTP (which is also referred as the post office PO here) will not be involved. Each
user in the system has a unique identifier. Before sending the plaintext message
M to the recipient, the originator computes a secret Z protected with the TTP’s
encryption key as Z = EPO(O,R,ER(M)). To reach timeliness, Micali proposed
a deadline solution, where originator chooses a time t after which the TTP should
not help the recipient in the conclusion of the protocol.

1. O → R : t, Z, SO(t, Z)
2. R → O : SR(Z)
3. O → R : ER(M)

Whenever R reaches step 1 and verifies O’s signature, it must extract the deadline
t and estimate whether it will have enough time to contact the PO in case of O’s
misbehavior or channel failure. Variable tD denotes the maximum possible time
discrepancy that R believes to exist between his clock and that of the PO. If R
receives step 1 in time tR (i.e., recipient’s local time) such that tR + tD is greater
than or equal to t, then R halts; otherwise it proceeds to step 2. After verifying
R’s signature, O sends the message M to the recipient at step 3.

After replying at step 2, if the recipient does not get the message within a rea-
sonable amount of time, or Z = EPO(O,R,ER(M)) does not hold, R contacts the
PO in a resolve sub-protocol:

1′. R → PO : t, Z, SO(t, Z), SR(Z)
2′. IF (tPO < t) AND (valid signatures)

PO → R : X
PO → O : SR(Z)

In this sub-protocol, the PO verifies whether R’s request arrives before O’s dead-
line and also whether both signatures are correct. If so, the PO decrypts Z with its
private key and, if the result is a triplet consisting of O, R, and an unknown string
X, it sends X to the recipient and forwards R’s signature to the originator.

Note that the semantics of the deadline t is different from the previous solutions
where clock shifts between the entities could not lead to a security problem, but to
a timeliness problem. Even though the deadline parameter is used for finalization
of the protocol and consequently for timeliness, the meaning is different due to
the optimistic approach. When the TTP participates in an on-line manner, the
deadline establishes a point after which the protocol is resolved and the recipients
can contact the TTP. In this case, the deadline indicates the point before which

13The work in this section has been partially published in [Zhou et al. 2005].

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 35

Protocol
execution t

Final state
Evidence
expiration

Protocol
execution t

Evidence
expiration

On-line TTP

Micali's
approach

Evidence
deletion

Fig. 6. Deadlines in fair CEM

the recipients must contact the TTP if needed, because afterwards, it will not help
(and thus fairness will be damaged).

It can be argued that, at the end, both solutions need a point of time in which
the TTP cannot help any more and if recipients do not access in advance, fairness
will be also damaged. Nevertheless, there is a very important difference in both
approaches which will be perhaps better appreciated in figure 6.

When evidence deletion occurs at the TTP, the latter will not be able to help en-
tities any more. This event can coincide with evidence expiration or not depending
on the TTP’s storage resources. Nevertheless, time (deadline t) at which the state
is final (synchronous timeliness) and evidence deletion are different. In this way,
entities can know beforehand when the protocol has a definitive state and then, if
needed, seek the TTP’s help. On the other hand, Micali’s solution unifies deadline
and evidence deletion. 14 If this deadline is selected too early, mail recipients could
not have enough time to resolve the protocol. If greater, entities will need to wait
in order to know the final state of the protocol, perhaps more than what is desired.

4.2 Extension to Fair CEM with Asynchronous Timeliness

Here, a different solution for timeliness, asynchronous timeliness (i.e., either party
can finish the protocol at any time without loss of fairness) is proposed. In Micali’s
proposal, even if the recipient approximately calculates in each run the time to
contact the PO, there can be always a situation in which the PO is unaccessible
for longer. In such a case, the recipient will not get the item from the (un-)fair
exchange protocol and it will be difficult to figure out who bears the responsibility
for the breach of fairness.

With the resolve sub-protocol, the recipient will be able to finish the protocol at
any time. Similarly, if O does not want to wait for the resolution of the protocol it
can abort it with cancel sub-protocol at any time too. The revised main protocol,
in which O’s signature is not needed anymore 15 in step 1 due to the omission of
the deadline, is as follows:

1. O → R : Z
2. R → O : SR(Z)
3. O → R : ER(M)

14There is no deletion event, but the meaning is the same; i.e., the TTP’s help is not available.
15In CEM applications, only non-repudiation of receipt is mandatory.

ACM Computing Surveys, Vol. V, No. N, 20YY.

36 · Jose A. Onieva et al.

The revised resolve sub-protocol which will be requested by the recipient under
the same conditions as the original one is as follows:

1′. R → PO : Z, SR(Z)
2′. R ↔ PO : IF cancelled THEN SO(cancel, Z)

ELSE ER(M)

When the PO receives such a request, it first checks R’s signature on Z. If valid,
the PO further decrypts Z and extracts the identities of sender and recipient of
Z. If R is the intended recipient of Z and the exchange has not been cancelled
by O, the PO marks the exchange status related to (O,R, h(Z)) as resolved, sends
ER(M) to R, and stores SR(Z) (which will be collected by O when it initiates the
cancel sub-protocol). If the exchange has been cancelled by O, the PO forwards
SO(cancel, Z) to R, and R can use this evidence to prove that O has cancelled the
exchange.

The new cancel sub-protocol is as follows:

1′. O → PO : Z,EPO(SO(cancel, Z))
2′. O ↔ PO : IF resolved THEN SR(Z)

ELSE ack

When the PO receives such a request from the originator, it first checks O’s
signature after decrypting with its corresponding asymmetric key 16. If valid, the
PO further decrypts Z and extracts the identities of sender and recipient. If O
is the sender of Z and the exchange status related to (O, R, h(Z)) is marked as
resolved, the PO forwards SR(Z) to O. Otherwise, the PO marks the exchange
status related to (O, R, h(Z)) as cancelled, and acknowledges O’s cancelation.

Because there is no deadline for the recipient, the originator can abort the pro-
tocol as desired. As we can see, the PO provides access to the items that any of
the parties needs. The parties can access the data at any time and it is not the
responsibility of the PO whether the users get the messages they expect. The PO
is not stateless and needs to maintain (within a reasonable amount of time) a table
with entries (O,R, h(Z), state) and to store the signatures for serving the users.
Therefore, the server implementing the PO must secure this information (although
confidentiality is not needed).

In case of a dispute, both parties must agree which arbitrator will evaluate the
final outcome of the protocol based on the evidence provided by the users. Con-
sequently, if the recipient denies having received a message M in a CEM protocol
run, the originator should provide (Z, SR(Z)) and the arbitrator settles that the
originator sent the message M to the recipient if:

- Z = EPO(O,R,ER(M)) holds;
- the recipient’s signature on Z is valid;
- the recipient cannot provide SO(cancel, Z).

16As pointed out in [González-Deleito 2005], O needs to encrypt its own signature in order to

avoid an attack which allows the recipient to get the cancel token (eavesdropping O’s request
from message 1′) when the protocol has been previously resolved by the recipient (and thus

making the originator believe the exchange succeeded).

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 37

It is easy to notice that integrity of the message is not ensured. Any external
attacker (or R itself) can create a message Z ′ = EPO(O,R,ER(M ′)). In this case,
the originator will obtain a proof for a message it did not send and will try to cancel
the protocol. If it is not possible (R already resolved the protocol), the recipient will
have a message the originator did not send but cannot demonstrate it (the process
is anonymous because there are no digital signatures). So this protocol does not
ensure the service, but it does ensure that the recipient can read the message the
originator sent if and only if the originator obtains evidence of receipt. If integrity
and authenticity of the message for ensuring the service are properties needed by
the originator, then it needs to digitally sign Z at step 1 and the receiver needs to
provide O’s signature at step 1’ of the resolve sub-protocol for PO’s verification.

4.3 Extension to Multi-Party Fair CEM

There are scenarios in which the participation of multiple entities can result in an
important improvement. CEM is one of them. We can easily figure out applications
in which sending e-mail to several users is feasible and useful. In section 2 several
solutions for multi-party CEM were pointed out. Based on Micali’s CEM protocol,
this extension provides a new feature such that the sender can distribute in a
certified manner a message M to several recipients. Some additional notation in
the protocol description is:

- R : a set of intended recipients.
- Header : a header indicating in which position the recipient has to look for its

information (e.g. [Ri, j]).
- M : message being sent from the originator to the recipients R.
- R′′ = R − R′ : a subset of R (in plaintext) with which the originator wants to

cancel the exchange.
- R′′ resolved : a subset of R′′ that have resolved the exchange with the resolve

sub-protocol.
- R′′ cancelled = R′′ −R′′ resolved : a subset of R′′ with which the exchange has

been cancelled by the PO.
- uR = uR1 , uR2 , ... : concatenation of public keys from group R.
- ER(M) : an group encryption of M for group R.
- Z = EPO(O,R,ER(M)) : a secret Z protected with the PO’s encryption key.

The PO will participate, if requested by any entity, in a mutually exclusive way
(i.e., atomic execution of the sub-protocols for each user). Here, we describe the
protocol.

The main protocol executed by the final entities is:

1. O ⇒ R : Header, uR, Z
2. Ri → O : SRi

(uRi
, Z) where each Ri ∈ R

3. O ⇒ R′ : ER′(M)

In step 1, the originator sends the secret Z and all the recipients’ public keys
such that if any recipient does not agree with its public encryption key (e.g., the
corresponding public key certificate has been revoked), then it stops the protocol.

ACM Computing Surveys, Vol. V, No. N, 20YY.

38 · Jose A. Onieva et al.

Otherwise, after verifying the data obtained, the recipient sends evidence of receipt
to the originator at step 2, and the latter sends the (encrypted) message M at step
3 to the set of recipients who replied.

If the originator did not receive a correct message 2 from some of the recipients
R′′, she may initiate the following cancel sub-protocol:

1′. O → PO : Z,R′′, SO(cancel, R′′, Z)
2′. PO FOR (all Ri ∈ R′′)

IF (Ri ∈ R′′ resolved) THEN retrieves SRi
(uRi

, Z)
ELSE appends Ri into R′′ cancelled

3′. O ↔ PO : all retrieved SRi
(uRi

, Z), SPO(R′′ cancelled, Z)

In this case, the originator communicates to the PO its intention of revoking
the protocol with entities contained in R′′. After verifying the originator’s cancel
request, the PO checks which entities previously resolved the protocol and gets
their proofs of receipt. Then, the PO generates evidence of cancelation for the rest
of entities and includes everything in a message destined to the originator.

If some recipient Ri did not receive the message 3 or it was not valid, Ri may
initiate the following resolve sub-protocol:

1′. Ri → PO : Header, uRi
, Z, SRi

(uRi
, Z)

2′. Ri ↔ PO : IF (Ri ∈ R′′ cancelled) THEN SPO(R′′ cancelled, Z)
ELSE {ERi(M)
appends Ri into R′′ resolved and stores SRi(uRi , Z)}

The recipient sends to the PO all the information that it has already got from the
originator along with its evidence of receipt. If this entity does not belong to the
group of entities with which the originator cancelled the exchange, the PO verifies
all the information (digital signatures) and decrypts Z. It also stores SRi

(uRi
, Z).

Note that if the protocol has been cancelled, it should be impossible for the recipient
to cheat the PO in a way that the PO reveals the message for that protocol run.
For that reason, the PO must verify the recipient’s signature as well as integrity of
Z in the first step.

Note that the recipient can cheat the TTP by manipulating the Header field.
Nevertheless, this will not disclose any other message, since it is encrypted with
the intended recipient’s public key. Furthermore, this action is nonsense due to two
reasons: (i) message M is similar for every recipient regardless of the position in
ER(M) and (ii) Ri will bring itself to an unfair situation since it will not be able to
get the message while the originator can obtain from the TTP its receipt signature.

If this entity belongs to the group of entities with which the originator cancelled
the exchange, the PO sends a cancelation evidence to the recipient such that the
latter can easily demonstrate to an arbitrator that the exchange was cancelled in
case a dispute arises.

If Ri denies having received M , the originator can present evidence Z,ER(M),
SRi

(uRi
, Z), SPO(R′′ cancelled, Z) and the arbitrator settles that the recipient re-

ceived the message M from the originator if:

- Ri can decrypt ER(M) with uRi and the outcome is M ;
- Z = EPO(O,R,ER(M)) holds;
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 39

- Ri’s signature on Z and its encryption public key is valid;
- PO’s signature on SPO(R′′ cancelled, Z) ∧Ri /∈ R′′ cancelled.

The originator will succeed on the dispute if all the above checks are positive. If
all the checks but the last are positive and it cannot present evidence of cancela-
tion, then the arbitrator must further interrogate Ri. If the latter cannot present
SPO(R′′ cancelled, Z) in which Ri ∈ R′′ cancelled, the originator also wins the
dispute. Otherwise, Ri can repudiate having received the message M . Therefore,
evidence provided by the PO is self-contained, that is, the PO need not be con-
tacted in case a dispute arises regarding the occurrence of a cancelation sub-protocol
launched by the originator.

5. APPLICATION: MULTI-PARTY CONTRACT SIGNING

In this section, we explain a new synchronous multi-party contract signing protocol
that, with n parties, it reaches a lower bound of 3(n−1) steps in the all-honest case
and 4n− 2 steps in the worst case (i.e., all parties contact the TTP). This is so far
the most efficient synchronous multi-party contract signing protocol in terms of the
number of messages required. It also considers additional features like timeliness
and abuse-freeness in an improved version 17.

In all practical schemes, contract signing involves a TTP which plays the role of
a notary in paper-based contract signing and somehow shares the legal duties the
former ones have. In fact, designing and implementing a contract signing protocol
using an in-line TTP should not be a complicated task. In this case, if Alice and
Bob wish to enter into a contract, they each sign a copy of the contract and send it
to the TTP through a secure channel. The TTP will forward the signed contracts
only when it has received valid signatures from both Alice and Bob.

In our continuous search for speeding up our daily life activities, it is desirable
not using a TTP in a contract signing protocol. Additionally, if the TTP is not
involved, the notary fee could be avoided. Some protocols appear in the literature
trying to eliminate the TTP’s involvement using gradual or probabilistic exchange of
signatures [Blum 1981; Even et al. 1985]. In [Even et al. 1985], Even et al. propose
a contract signing protocol which makes use of oblivious transfer. This allows the
transfer of a recognizable (e.g. signed) message M such that the recipient can read
it with a probability 1/2 while the originator has no way of knowing whether the
recipient could read it or not. With this tool, they provided a probabilistic contract
signing protocol with a very high success (fairness) probability.

Nevertheless, and specially for contract signing protocols, a signer would not like
to risk one million dollars when the deal is done. Therefore, these solutions may
not be accepted by signatories. Furthermore, users always deal with the presence
of TTPs when important contracts are to be signed (e.g., the act of selling a house
in which usually a notary is involved) in the paper-based world.

Thus, in this section, we focus on deterministic optimistic contract signing pro-
tocols. A synchronous model is used, in which we assume messages sent among
participants can be lost in the network, but a message from a participant reaches
the TTP in a finite and known amount of time. Attackers can insert, delete and

17The work in this section has been partially published in [Zhou et al. 2006].

ACM Computing Surveys, Vol. V, No. N, 20YY.

40 · Jose A. Onieva et al.

modify messages, but it is assumed that attackers cannot break the clock synchro-
nization of the network and cannot forge digital signatures. Under this model, the
number of rounds can be made independent of the number of participants.

5.1 Improved Synchronous MPCS Protocol

Here, we first present a simple synchronous protocol for multi-party contract sign-
ing. As in Asokan’s approach, this is also based on two differentiated phases: a
promise to sign, and a real signature that a party releases only after receiving all
promises from the rest of participants. Again, in the same manner, this protocol
reaches a lower bound of 4(n−1) steps in the all-honest case and 5n−3 steps in the
worst case when all parties contact the TTP. This result will be further improved
in the optimal version by reducing the number of steps to 3(n−1) in the all-honest
case and 4n− 2 in the worst case.

5.1.1 A Simple Version. Let us consider the following simple solution which
uses verifiable encryption of signatures based on a ring architecture for achieving
transparency of the TTP. Assume that the channel between any participant and
the TTP is functional and not disrupted. The following notation is used in the
protocol description.

- C = [M,P, id, t] : a contract text M to be signed by each party Pi ∈ P (i =
1, · · · , n), a unique identifier id for the protocol run, and a deadline t agreed by
all parties to contact the TTP.

- Certi : a certificate with which anyone can verify that the ciphertext is the
correct signature of the plaintext, and can be decrypted by the TTP (see CEMBS
- Certificate of an Encrypted Message Being a Signature in [Bao et al. 1998]).

A simple linear protocol for multi-party contract signing is sketched as follows:

1. P1 → P2 : m1[= C, eTTP (SP1(C)), Cert1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Cert2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Certn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn

(C)), Certn]
n + 1. Pn−1 → Pn−2 : mn−1,mn

2(n− 1). P2 → P1 : m2,m3, ..,mn

2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)
3n− 2. Pn → Pn−1 : SPn

(C)
3n− 1. Pn−1 → Pn−2 : SPn−1(C), SPn(C)
4(n− 1). P2 → P1 : SP2(C), SP3(C), .., SPn(C)

The above main protocol is divided into two phases. The parties first exchange
their commitments in an “in-and-out” manner. Note that P1 can choose t in the
first message (and others can halt if they do not agree). Only after the first phase is
finished at step 2(n− 1), the final signatures are exchanged. Following this simple
approach, only 4(n− 1) steps are needed.

If there is no exception (e.g., network failure or misbehaving party), the protocol
will not need the TTP’s help. Otherwise, the following resolve sub-protocol helps
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 41

to drive the contract signing process to its end. Pi can contact the TTP before the
deadline t.

1. Pi → TTP : resolvePi = m1, ..,mn

2. TTP : IF NOT resolved AND resolvePi is received before t THEN
decrypts m1..mn

publishes SP1(C), .., SPn
(C)

resolved=true

Boolean variable resolved is initialized to false. If the main protocol is not com-
pleted successfully, some parties may not hold all the commitments (m1, ..,mn).
Then, they just wait until the deadline t and check with the TTP whether the
contract has been resolved by other parties. If not, the contract is cancelled. Oth-
erwise, they get the valid contract (SP1(C), .., SPn

(C)) from the TTP.
If a party has all the commitments when the main protocol is terminated abnor-

mally, it could initiate the above sub-protocol. Then the TTP will help to resolve
the contract if the request is received before the deadline t, and the contract will
be available to all the participants (even after the deadline t). After the deadline,
the TTP will not accept such requests any more. In other words, the status of the
contract will be determined the latest by the deadline t. Note that no party can
cheat the TTP using a distinct deadline because in that case they will be cancelling
or resolving a different contract. If parties do not want to advertise this data in the
contract itself since timeout is not part of the text agreed, then the deadline can
be somehow (hashed together with) included in the unique id which is the main
variable used by the TTP to distinguish between different protocol instances as a
contract reference. In this protocol, the TTP intervention is simple, elegant and
lightweight.

In this case, the dispute resolution process is straightforward. If a party holds
all the signatures, the contract is assumed to be valid.

5.1.2 An Optimal Version. The simple version protocol has two clearly differ-
entiated phases: exchange of commitments and exchange of digital signatures. The
number of steps can be further reduced if more available information is sent at each
step and then both phases are merged. This will result in an improvement of the
previous simple version protocol.

Using the same notation, an optimal synchronous protocol for multi-party con-
tract signing is outlined as follows:

1. P1 → P2 : m1[= C, eTTP (SP1(C)), Cert1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Cert2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Certn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn

(C)), Certn], SPn
(C)

n + 1. Pn−1 → Pn−2 : mn−1,mn, SPn−1(C), SPn(C)
2(n− 1). P2 → P1 : m2,m3, ..,mn, SP2(C), SP3(C), .., SPn(C)
2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)

The resolve sub-protocol used by participants to request the TTP’s help does
not change. Note that even though the two phases are merged, no party releases

ACM Computing Surveys, Vol. V, No. N, 20YY.

42 · Jose A. Onieva et al.

its plaintext signature of the contract without having first received all the commit-
ments. If any party decides to quit before releasing its plaintext signature of the
contract, the rest of participants can obtain all plaintext signatures of the contract
with the TTP’s help. As the protocol is similar to the previous one, the same
requirements are fulfilled and the identical dispute resolution process is used by the
adjudicator.

This optimal version allows overlapping the dispatch of promises with real sig-
natures without loosing fairness. It improves the simple version presented in Sec-
tion 5.1.1 by reducing the number of steps to 3(n − 1) in the all-honest case and
4n − 2 in the worst case. Note that for n = 2, three messages are sufficient and
optimal, as shown in [Pfitzmann et al. 1998].

5.2 Achieving Abuse-Freeness

The MPCS protocol presented in the previous section improved the lower bound
of steps in existing synchronous MPCS protocols. However, it does not satisfy
the properties of abuse-freeness and asynchronous timeliness. Here the protocol is
further improved to address these properties.

Although it is not possible to force a participant to keep on following the steps
of the protocol, the protocol can be designed in such a manner that it has no way
to demonstrate to an outsider the contract is under its control. For this purpose,
it uses a blind commitment that only the TTP can verify. With this concept of
design in mind, the previous protocol can be modified to eliminate the “illustrative”
information. The main protocol remains the same, but Certi is not included in mi.
Instead, evidence of origin of the blind commitment Commiti is generated:

Commiti = SPi
(h(C), eTTP (SPi

(C)))

where h(C) is the hash value of C to be used to establish a unique link between
Commiti and C.

1. P1 → P2 : m1[= C, eTTP (SP1(C)), Commit1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Commit2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Commitn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn

(C)), Commitn], SPn
(C)

n + 1. Pn−1 → Pn−2 : mn−1,mn, SPn−1(C), SPn(C)
2(n− 1). P2 → P1 : m2,m3, ..,mn, SP2(C), SP3(C), .., SPn(C)
2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)

Each party needs to check whether all the blind commitments it has received are
valid before releasing its real signature of the contract. A valid blind commitment
Commiti means it is from Pi (by checking its signature), linked to C (by checking
h(C)), but does not guarantee that eTTP (SPi

(C)) in Commiti matches SPi
(C).

Commiti is correct if it is valid and also matches SPi
(C).

If there is no exception (e.g., network failure or misbehaving party), the protocol
will not need the TTP’s help. Otherwise, a modified resolve sub-protocol helps to
drive the contract signing process to its end. Pi can contact the TTP before the
ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 43

deadline t.

1. Pi → TTP : resolvePi
= m1, ..,mn

2. TTP : IF NOT resolved AND resolvePi is received before t
AND all Commiti are valid THEN

decrypts & verifies m1..mn

resolved=true
IF SP1(C), .., SPn

(C) ok THEN
publishes SP1(C), .., SPn

(C)
ELSE IF Pi /∈ groupf

publishes fail, groupf , STTP (fail, C, groupf)

Boolean variable resolved is initialized to false. When a party holding all the
valid blind commitments initiates the above sub-protocol, the TTP will help to
resolve the contract if the request is received before the deadline t. The TTP
decrypts and verifies m1, · · · ,mn. If they are all correct, the TTP will publish
SP1(C), · · · , SPn(C). Otherwise, the TTP will invalidate the contract by publish-
ing a fail token STTP (fail, C, groupf) where groupf indicates the parties which
misbehaved in generating their commitments.

The dispute resolution process is changed when the fail token is introduced. If
a party can show this token, the contract is invalid. Therefore, with respect to
the simple dispute resolution process defined previously, now the arbiter needs to
interview both parties disputing the validity of the contract.

Furthermore, at the end of the main protocol, each party needs to check whether
eTTP (SPi

(C)) in Commiti matches SPi
(C) for i = 1, · · · , n (assuming the encryp-

tion algorithm is deterministic). If not, it should initiate the above sub-protocol
to get the fail token. A party Pi cannot get any advantage by providing different
Commiti in the main protocol and the resolve sub-protocol. If Pi provides correct
Commiti in the main protocol but incorrect Commit′i in the sub-protocol, Pi will
not get the fail token, i.e., cannot cancel a protocol instance whose final state is
signed. On the other hand, if Pi provides incorrect Commiti in the main protocol
but correct Commit′i in the sub-protocol, Pi may get the signed contract if other
parties did not misbehave in generating their commitments, but any other honest
party can initiate the resolve sub-protocol to get the fail token, thus the contract
is still invalid.

Remark 5.1. It seems that an external adversary could generate valid looking or
even fake blind commitments himself. This would allow him to abort the protocol
when desired, but evidence of origin avoid this situation.

The blind commitment does not allow a participant to demonstrate that the
protocol state is under its control. In fact, in this case, getting all mi does not
mean being able to solve the protocol as in previous protocols presented in this
section. Thus, it provides an abuse-freeness feature. Proof is straightforward, since
there is no point in the protocol in which an entity can ensure, even to itself, that
the contract is signed until plaintext signatures are obtained. The solution allows
to maintain the same number of steps as the optimal protocol in Section 5.1.2.
Furthermore, the TTP is still transparent in this sub-protocol because the signed
contract published by the TTP is the same as the one obtained in the main protocol.

ACM Computing Surveys, Vol. V, No. N, 20YY.

44 · Jose A. Onieva et al.

5.3 Achieving Timeliness

In the previous protocols just presented, a deadline t is selected by the first partic-
ipant. If other participants disagree with the deadline, they can simply abort the
execution of the protocol. Of course, this deadline could be negotiated among the
participants before the contract signing protocol is initiated.

If the main protocol is not completed successfully, some participants may hold
all the commitments while the others may only hold part of the commitments. For
those holding all the commitments, they have the freedom to either resolve the
contract with the TTP’s help before the deadline t, or take no action and just let
the contract being automatically cancelled after the deadline t.

As we have already mentioned, asynchronous timeliness is not fulfilled in these
protocols, where a deadline t is used, forcing all the participants to approximately
synchronize their clocks with the TTP’s one. This task has been widely stud-
ied and standard solutions exist (such as the network time protocol [Mills 1992]).
Nevertheless, asynchronous timeliness fits better with users’ desires in MPCS pro-
tocols; since, for instance, contract conditions can also change with time, not being
favorable any more for a group of entities.

For those only holding part of the commitments, they have no options but only
wait until the deadline t to know the status of the contract. Obviously, this is
unfavorable to these participants in term of timeliness. They should also have
the right to decide the status of the contract before the deadline t. As they only
hold part of commitments, they are not able to resolve the contract, so they can
only choose to cancel the contract. (Note that in this “in-and-out” architecture of
commitment exchange, for those participants only holding part of the commitments,
even if all of them collaborate, their combined commitments are still incomplete to
resolve the contract.)

Here we present a (j, n)-threshold cancel sub-protocol. As long as there are at
least j out of n participants that wish to cancel the contract before the deadline
t, the contract could be cancelled. The cancel sub-protocol is as follows, where
counter (initial value equals to zero) records the number of cancel requests received
by the TTP, and groupc records the participants which made cancel requests. For
simplicity of description, it is built based on the main protocol in Section 5.1.2
without considering abuse-freeness (but can be easily merged).

1. Pi → TTP : cancelPi
= C, cancel, SPi

(C, cancel)
2. TTP : IF cancelPi is received before t AND C is not resolved

AND C is not cancelled THEN
stores cancelPi

; groupc = groupc + Pi;
counter + +;
IF counter ≥ j THEN

sets C as cancelled
publishes cancel, groupc, STTP (cancel, C, groupc)

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 45

The resolve sub-protocol is modified as follows:

1. Pi → TTP : resolvePi = C,m1, ..,mn, SPi(C,m1, ..,mn)
2. TTP : IF resolvePi

is received before t AND C is not cancelled
AND C is not resolved

decrypts m1..mn

sets C as resolved
publishes SP1(C), .., SPn(C)

With the above cancel and resolve sub-protocols, each participant has at least
one option to determine the status of the contract before deadline t if the main
protocol is not completed successfully. Thus timeliness is achieved, and the extent
of timeliness depends on the threshold value j: strong timeliness when j = 1, and
weak timeliness when j = n.

However, the threshold value j should be selected carefully. If j is too small, a
few parties may collude to invalidate a contract. If j is too big, it might be hard to
establish a valid cancel request among j parties. A possible option is j = [n/2]+1,
with a weak majority to “vote” for the validity of a contract.

In the dispute resolution, the cancel token issued by the TTP has the top priority.
In other words, if a participant presents the cancel token, then the contract is
invalid. That implies that if there are at least j out of n participants who want to
cancel the contract before the deadline, even if they have released their plaintext
signatures in the main protocol, they together can still change their mind before
that deadline. This is a reasonable scenario in the real world because the situation
defined in the contract may change with time, even during the process of contract
signing, and each participant wishes to pursue the maximum benefit by taking
appropriate actions (resolve or cancel).

As the cancel token from the TTP has higher priority than the signed contract,
those parties that have got the signed contract in the main protocol may need to
double check with the TTP about the status of the contract by the deadline t.
(Note that the double check does not mean the involvement of the TTP itself, but
just a query to a public file maintained by the TTP.) If they do not want to wait
until that deadline, they can send the resolve request to the TTP instead, thus
blocking other parties to enable the TTP to issue the cancel token.

6. CONCLUSIONS

Repudiation is one of the fundamental security threats existing in paper-based
and electronic environments. In order to give an answer to such a threat, non-
repudiation is defined by the ITU as one of the main security services. As such,
this has received relatively enough attention from the scientific community, specially
assuring fairness and designing more efficient protocols. But this has been mainly
focused towards protocols (or applications) in which two entities take part. Some
applications nowadays assume the existence of several participating users and the
requirements with respect to fairness and efficiency change significantly. Thus, this
service needs to be fully considered in multi-party environments.

We provided a survey which starts from the inherent fundamentals of the non-
repudiation service defining the different elements, roles, phases, requirements and
state of the art standard analysis of the basic (two-entity oriented) non-repudiation

ACM Computing Surveys, Vol. V, No. N, 20YY.

46 · Jose A. Onieva et al.

services. This allows us to address the definitions and revisit the requirements
of multi-party schemes. In this survey we split multi-party scenarios in two main
categories: 1-N and N-N scenarios. With this classification we surveyed the existing
work and provided an analysis of the existing research literature.

We stepped forward providing a novel solution for the 1-N multi-party case in
which a message can be multicasted to several recipients. We designed our general
protocols in a way that allows the participating entities to send personal and confi-
dential messages to other entities without loss of privacy in two different approaches:
on-line and optimistic, thus enabling different types of applications. Requirements
analysis and comparison in terms of efficiency with previous solutions is provided
as well.

We moved towards the application field reading up on applications for multi-
party certified electronic mail and contract signing. In both cases we contributed
with new solutions. In the first case we generalized a fast and simple optimistic
fair certified electronic mail protocol to the multi-party case and integrated and
analyzed an asynchronous timeliness property. We also improved existing solutions
for synchronous multi-party contract signing protocols based on two differentiated
phases: a promise to sign, and a real signature that a party releases only after re-
ceiving all promises from the rest of participants. Merging both phases we achieved
an improvement on the number of steps with respect to the surveyed literature.

REFERENCES

Asokan, N. 1998. Fairness in electronic commerce. Ph.D. thesis, University of Waterloo, Com-
puter Science.

Asokan, N., Baum-Waidner, B., Schunter, M., and Waidner, M. 1998. Optimistic syn-
chronous multi-party contract signing. Tech. Rep. RZ 3089, IBM Zurich Research Lab.

Asokan, N., Schunter, M., and Waidner, M. 1996. Optimistic protocols for multi-party fair
exchange. Tech. Rep. RZ 2892 (# 90840), IBM, Zurich Research Laboratory.

Asokan, N., Schunter, M., and Waidner, M. 1997. Optimistic protocols for fair exchange. In
Proceedings of the 4th ACM Conference on Computer and Communications Security. ACM

Press, 7–17.

Asokan, N., Shoup, V., and Waidner, M. 2000. Optimistic fair exchange of digital signatures.

IEEE J. Sel. Area. Comm. 18, 4, 593–610.

Ateniese, G., de Medeiros, B., and Goodrich, M. T. 2001. TRICERT: A distributed certified

E-mail scheme. In Network and Distributed System Security Symposium Conference Proceed-

ings.

Bao, F., Deng, R., and Mao, W. 1998. Efficient and practical fair exchange protocols with
off-line ttp. In IEEE Symposium on Security and Privacy. IEEE, 77–85.

Bao, F., Deng, R., Nguyen, K., and Varadharajan, V. 1999. Multi-party fair exchange with an

off-line trusted neutral party. In Database and Expert Systems Applications, 1999. Proceedings.
Tenth International Workshop on. 858–862.

Baum-Waidner, B. 2001. Optimistic asynchronous multi-party contract signing with reduced
number of rounds. In Automata, Languages and Programming, F. Orejas, P. Spirakis, and

J. V. Leeuwen, Eds. 28th International Colloquium, ICALP 2001, Springer-Verlag, 898–911.

Baum-Waidner, B. and Waidner, M. 1998. Optimistic asynchronous multi-party contract sign-
ing. Tech. Rep. RZ 3078, IBM Zurich Research Lab.

Baum-Waidner, B. and Waidner, M. 2000. Round-optimal and abuse-free multi-party contract

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 47

signing. In 27th International Colloquium on Automata, Languages and Programming. LNCS,

vol. 1853. Springer, 524–535.

Blum, M. 1981. Three applications of the oblivious transfer: Part i: Coin flipping by telephone;

part ii: How to exchange secrets; part iii: How to send certified electronic mail. Tech. rep.,

Department of EECS, University of California.

Brannigan, C. 2004. Beyond e-commerce: Expanding the potential of Online Dispute Resolution.

Interaction 16, 4, 15–17.

Chadha, R., Kremer, S., and Scedrov, A. 2004. Formal analysis of multi-party contract signing.
In Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW’04). IEEE

Computer Society Press, 266–279.

Chiou, G. and Chen, W. 1989. Secure broadcasting using the secure lock. IEEE Transaction
on Software Engineering 15, 8 (August), 929–934.

DeMillo, R. A. and Merritt, M. 1983. Protocols for data security. IEEE Computer 16, 39–50.

Even, S., Goldreich, O., and Lempel, A. 1985. A randomized protocol for signing contracts.
In Communications of the ACM. Vol. 28. 637–647.

Ferrer-Gomila, J. L., Payeras-Capellà, M., and Huguet-Rotger, L. 2001. Efficient opti-

mistic n-party contract signing protocol. In Proceedings of the 4th International Conference
on Information Security. Springer-Verlag, 394–407.

Ferrer-Gomila, J. L., Payeras-Capellà, M., and Huguet-Rotger, L. 2002. A realistic pro-

tocol for multi-party certified electronic mail. In Information Security ISC 2002. LNCS, vol.
2433. 210–219.

Ferrer-Gomila, J. L., Payeras-Capellà, M., and Huguet-Rotger, L. 2004. Optimality in

asynchronous contract signing protocols. In 1st International Conference on Trust and Privacy
in Digital Business. Vol. 3184. Springer-Verlag, 200–208.

Franklin, M. and Tsudik, G. 1998. Secure group barter: Multi-party fair exchange with semi-

trusted neutral parties. In Proceedings of Financial Cryptography 1998. Lecture Notes in
Computer Science, vol. 1465. Springer, 90–102.

Garay, J. A. and MacKenzie, P. D. 1999. Abuse-free multi-party contract signing. In Proceed-

ings of the 13th International Symposium on Distributed Computing. Springer-Verlag, 151–165.

González-Deleito, N. 2005. Trust reletionships in exchange protocols. Ph.D. thesis, Faculté

des Sciences, Université Libre de Bruselles.

González-Deleito, N. and Markowitch, O. 2001. An optimistic multi-party fair exchange
protocol with reduced trust requirements. In Proceedings of the 4th International Conference on

Information Security and Cryptology. Lecture Notes in Computer Science, vol. 2288. Springer-

Verlag, 258–267.

González-Deleito, N. and Markowitch, O. 2002. Exclusion-freeness in multi-party exchange

protocols. In Lecture Notes in Computer Sciences. 5th International Conference on Information

Security (ISC 2002), Springer-Verlag, 200–209.

Gürgens, S. and Rudolph, C. 2002. Security analysis of (un-) fair non-repudiation protocols.

In Formal Aspects of Security. LNCS, vol. 2629. Spinger-Verlag, 99–114.

Gürgens, S., Rudolph, C., and Vogt, H. 2003. On the security of fair non-repudiation protocols.
In Proceedings of 2003 Information Security Conference. Vol. 2851. Springer-Verlag, 193–207.

ISO/IEC 1991. 1st WD 13888-2. Non-repudiation using a symmetric key algorithm.

JTC1/SC27/WG2 N83. ISO/IEC.

ISO/IEC 1996. DIS 10181-4. Information technology - Open systems interconnection - Security
frameworks in open systems - Part 4: Non-repudiation. ISO/IEC.

ISO/IEC 1997. 2nd CD 13888-3. Information technology - Security techniques - Non-repudiation
- Part 3: Using asymmetric techniques. JTC1/SC27 N1379. ISO/IEC.

ISO/IEC 1998. 3rd CD 13888-2. Information technology - Security techniques - Non-repudiation
- Part 2: Using symmetric encipherment algorithms. JTC1/SC27 N1276. ISO/IEC.

ISO/IEC 2004. 13888-1. Information technology - Security techniques - Non-repudiation - Part

1: General model. JTC1/SC27. ISO/IEC.

ACM Computing Surveys, Vol. V, No. N, 20YY.

48 · Jose A. Onieva et al.

ITU-T X.509 2000. Information technology - Open Systems Interconnection - The Directory:

Public-key and attribute certificate frameworks. ITU-T X.509.

ITU-T X.813 1996. Information technology - Open Systems Interconnection - Security frameworks
for open systems: Non-repudiation framework. ITU-T X.813.

Khill, I.and Kim, J., Han, I., and Ryou, J. 2001. Multi-party fair exchange protocol using ring

architecture model. Computers & Security 20, 5, 422–439.

Kremer, S. and Markowitch, O. 2000a. A multi-party non-repudiation protocol. In Proceedings
of SEC 2000: 15th International Conference on Information Security. IFIP World Computer

Congress, 271–280.

Kremer, S. and Markowitch, O. 2000b. Optimistic non-repudiable information exchange. In
J. Biemond, editor, 21st Symp. on Information Theory in the Benelux. Werkgemeenschap

Informatie- en Communicatietheorie, 139–146.

Kremer, S., Markowitch, O., and Zhou, J. 2002. An intensive survey of fair non-repudiation

protocols. Computer Communications 25, 17 (Nov.), 1606–1621.

Lindell, Y. 2003. Composition of Secure Multi-Party Protocols. Springer.

Markowitch, O., Gollmann, D., and Kremer, S. 2002. On fairness in exchange protocols.

In 5th International Conference on Information Security and Cryptology, Springer-Verlag, Ed.

LNCS, vol. 2587. 451–464.

Markowitch, O. and Kremer, S. 2000. A multi-party optimistic non-repudiation protocol. In

Proceedings of 3rd International Conference on Information Security and Cryptology. LNCS,

vol. 2015. Springer-Verlag, 109–122.

Markowitch, O. and Roggeman, Y. 1999. Probabilistic non-repudiation without trusted third
party. In Second Workshop on Security in Communication Network 99.

Markowitch, O. and Saeednia, S. 2001. Optimistic fair-exchange with transparent signature

recovery. In Proceedings of Financial Cryptography 2001. LNCS, vol. 2339. Springer-Verlag,
339–350.

Maurer, U. 2004. New approaches to digital evidence. In Proceedings of the IEEE. Vol. 92.

IEEE, 933–947.

Micali, S. 2003. Simple and fast optimistic protocols for fair electronic exchange. In Proceedings
of the twenty-second annual symposium on Principles of distributed computing. ACM Press,

12–19.

Mills, D. L. 1992. Network time protocol (version 3) specification, implementation and analysis.

Tech. Rep. RFC 1305, IETF Working Group.

Onieva, J. A., Zhou, J., Carbonell, M., and Lopez, J. 2003. A multi-party non-repudiation
protocol for exchange of different messages. In 18th IFIP International Information Security

Conference. Security and Privacy in the Age of Uncertainty. IFIP, Kluwer Academic Publishers,
37–48.

Onieva, J. A., Zhou, J., and Lopez, J. 2004. Non-repudiation protocols for multiple entities.
Computer Communications 27, 16, 1608–1616.

Pfitzmann, B., Schunter, M., and Waidner, M. 1998. Optimal efficiency of optimistic contract

signing. In Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing. ACM Press, 113–122.

Shao, M.-H., Zhou, J., and Wang, G. 2005. On the security of a certified e-mail scheme with
temporal authentication. In Proceedings of 2005 ICCSA Workshop on Internet Communications
Security. Lecture Notes in Computer Science 3482, 701–710.

Zhou, J. 2001. Non-repudiation in electronic commerce. Computer Security Series. Artech House.

Zhou, J. 2004. On the security of a multi-party certified email protocol. In Information and Com-

munications Security: 6th International Conference. Lecture Notes in Computer Science 3269,
40–52.

Zhou, J. and Gollmann, D. 1996. A fair non-repudiation protocol. In Proceedings of IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, 55–61.

Zhou, J. and Gollmann, D. 1997. An efficient non-repudiation protocol. In PCSFW: Proceedings
of The 10th Computer Security Foundations Workshop. IEEE Computer Society Press, 126–

132.

ACM Computing Surveys, Vol. V, No. N, 20YY.

Multi-Party Non Repudiation Protocols: A Survey · 49

Zhou, J., Onieva, J. A., and Lopez, J. 2005. Optimised multi-party certified email protocols.

Information Management & Computer Security Journal 13, 5, 350–366.

Zhou, J., Onieva, J. A., and Lopez, J. 2006. A synchronous multi-party contract signing protocol
improving lower bound of steps. In 21st IFIP International Information Security Conference

Security and Privacy in Dynamic Environments. IFIP, vol. 201. IFIP SEC, Springer, 221–232.

ACM Computing Surveys, Vol. V, No. N, 20YY.

