

A survey on the (in)security of Trusted Execution Environments

Journal Pre-proof

A survey on the (in)security of Trusted Execution Environments

Antonio Muñoz, Ruben Rios, Rodrigo Roman, Javier Lopez

PII: S0167-4048(23)00090-1
DOI: https://doi.org/10.1016/j.cose.2023.103180
Reference: COSE 103180

To appear in: Computers & Security

Received date: 16 November 2022
Revised date: 4 February 2023
Accepted date: 9 March 2023

Please cite this article as: Antonio Muñoz, Ruben Rios, Rodrigo Roman, Javier Lopez, A sur-
vey on the (in)security of Trusted Execution Environments, Computers & Security (2023), doi:
https://doi.org/10.1016/j.cose.2023.103180

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

A. Muñoz, R. Rios, R. Roman, and J. Lopez, “A survey on the (in)security of Trusted Execution Environments”, Computers & Security, pp.
103-180, 2023.
http://doi.org/https://doi.org/10.1016/j.cose.2023.103180
NICS Lab. Publications: https://www.nics.uma.es/publications

https://doi.org/10.1016/j.cose.2023.103180
https://doi.org/10.1016/j.cose.2023.103180

A survey on the (in)security of Trusted Execution Environments

Antonio Muñoza,∗, Ruben Riosa, Rodrigo Romana, Javier Lopeza

aNetwork, Information and Computer Security (NICS) Lab,
University of Malaga, Spain

Abstract

As the number of security and privacy attacks continue to grow around the world, there is an ever increasing need
to protect our personal devices. As a matter of fact, more and more manufactures are relying on Trusted Execution
Environments (TEEs) to shield their devices. In particular, ARM TrustZone (TZ) is being widely used in numerous
embedded devices, especially smartphones, and this technology is the basis for secure solutions both in industry and
academia. However, as shown in this paper, TEE is not bullet-proof and it has been successfully attacked numerous
times and in very different ways. To raise awareness among potential stakeholders interested in this technology, this
paper provides an extensive analysis and categorization of existing vulnerabilities in TEEs and highlights the design
flaws that led to them. The presented vulnerabilities, which are not only extracted from existing literature but also from
publicly available exploits and databases, are accompanied by some effective countermeasures to reduce the likelihood
of new attacks. The paper ends with some appealing challenges and open issues.

Keywords: Computer security, Secure hardware, Trusted Execution Environments, Hardware attacks, Software
attacks, Side-channel attacks.

1. Introduction

Nowadays, a wide range of mechanisms are emerging
to mitigate current and future security threats associated
with the development of an ever increasing number of
heterogeneous computing devices. Computing platforms
are continuously evolving, running sophisticated operating
systems and hosting countless applications from possibly
untrustworthy vendors. In these highly complex environ-
ments, the risk of a security breach is extremely high and
hence the need for execution environments capable of iso-
lating security-sensitive applications. The inclusion of se-
cure execution environments enables them hosting a wide
variety of applications and protecting the integrity of their
own internal state.

Among these mechanisms, a relevant choice is the
use of Trusted Execution Environments (TEE), which are
hardware-isolated areas in microprocessors that enable the
secure execution of applications thereby assuring the con-
fidentiality and integrity of data and code. In fact, in the
definition of the TEE standard (Ekberg et al., 2012) it
appears as an isolated environment that coexists and co-
operates with the operating system. The main purpose of
this isolation is to provide security to the whole system.
TEE technology is certainly a trend in modern platforms,

∗Corresponding author
Email addresses: amunoz@lcc.uma.es (Antonio Muñoz),

ruben@lcc.uma.es (Ruben Rios), roman@lcc.uma.es (Rodrigo
Roman), jlm@lcc.uma.es (Javier Lopez)

due in part to the adoption of smartphones as our primary
platform of interaction with other devices.

ARM’s TrustZone design stands out among the vari-
ous system-on-chip (SoC) isolation solutions. TrustZone
(TZ) is the collection of hardware mechanisms that en-
able TEEs to implement the required isolation from the
main operating environment. TEEs have been considered
as secure elements and as such have been used for protect-
ing sensitive applications in a number of verticals, such as
cyber-physical systems (CPS) (Pinto et al., 2017) or em-
bedded systems (Janjua et al., 2019). Nevertheless, some
recently found vulnerabilities and attacks on different TEE
implementations, should make us re-examine existing as-
sumptions on the security provisions of TEEs.

There are various works, such as (Tang et al., 2017; Ko-
maromy, 2018; Lipp et al., 2016; Rosenberg, 2014; Machiry
et al., 2017), that provide a nice perspective on the situ-
ation of security in TEE. In addition, other works pro-
vide additional analyses on this subject. For example,
Sabt el al. (Sabt et al., 2015) describe the fundamental
properties of TEE and provide a comparative study of dif-
ferent TEEs based on ARM TZ, but this work does not
analyze their impact nor discuss the main reasons that
may lead to attacks. Other examples, such as Arfaoui et
al. (Arfaoui et al., 2014), provide a perspective according
to GlobalPlatform (GlobalPlatform) standards, in terms
of security, with various TEE technologies, and Akona et
al. (Asokan et al., 2014) present a comprehensive review
of the current role of trusted computing technology in the
field of mobile devices.

Preprint submitted to Computers & Security March 13, 2023

Our approach differs from the aforementioned papers
in the sense that our study focuses on classifying existing
vulnerabilities and identifying their impact on the different
TZ-based TEE implementations. For this purpose, various
devices in the market have been taken as a reference. Note
that there have been other papers that analyze such issues,
but only partially. For example, Santos et al. (Santos et al.,
2014) provide a taxonomy of vulnerabilities in commer-
cial TEE, but without delving into the particularities of
the attacks. Another example is Cerdeira et al. (Cerdeira
et al., 2020), which provide an analysis of the security vul-
nerabilities found, until then, in those commercial TEE
implementations based on TrustZone. Their paper was
limited to the analysis of Qualcomm1, Trustonic, Huawei,
Nvidia (Corporation, 2015) and Linaro OP-TEE (Brand)
TEE systems. Finally, other works, such as Busch et
al. (Busch et al., 2020) and Meng et al. (Meng et al., 2018)
also provide a thorough critical review, although limited to
Huawei’s TEE and Android vulnerabilities, respectively.

This paper includes an exhaustive analysis of the
security limitations and associated countermeasures of
TrustZone-based TEEs. More specifically, the main con-
tributions of this paper are as follows:

1. An extensive review and analysis of the state of the
art of TZ security extensions, including TEE imple-
mentations and their features.

2. A comprehensive categorization of existing vulnera-
bilities and attacks against TEE implementations.

3. A detailed analysis of existing countermeasures for
the described attacks and vulnerabilities.

4. A discussion on open challenges and recommenda-
tions for future implementations of secure TEEs.

The rest of the paper is organized as follows: section 2
provides a relevant background on TEE including the evo-
lution of the standardization, a description of its main ca-
pabilities and applications, and some implementation de-
tails. Section 3 presents a novel taxonomy of TEE at-
tacks that will guide the exposition throughout the rest
of the paper. Software-based attacks are detailed in sec-
tion 4, architectural attacks in section 5. Side-channel
attacks are analyzed separately in section 6 and micro-
architectural attacks in 7. In section 8 a series of existing
countermeasures are compiled and analyzed. Finally, open
challenges are discussed in section 9, and conclusions and
future works are presented in section 10.

2. Background

2.1. The Evolution of Trusted Execution Environments

Software security mechanisms are not sufficient to
counter advanced attacks in many real-world situations. In

1Qualcomm Product Security. Available: https://www.

qualcomm.com/company/product\discretionary{-}{}{}security/

security\discretionary{-}{}{}advisories

such cases, building secure solutions requires the involve-
ment of secure hardware elements. Doubtlessly, the need
for secure elements boosted the development of the TPM
(Trusted Platform Module), whose first version dates from
2003 and was followed by TPM 2.0 (TCG, 2013), which
appeared several years later, in 2012. However, both of
these standards have been considered unsuitable for mo-
bile computing devices for various reasons, such as limita-
tions derived from the use of batteries, the computational
restrictions imposed by mobile devices or the increased
price implied by the integration of a TPM chip, which
in some cases can represent a high percentage of the de-
vice’s hardware budget. In this line, the Trusted Comput-
ing Group (TCG) (TCG, 2013) defined in 2007 the spec-
ifications of the Mobile Trusted Module (MTM) (Ekberg
et al., 2007), which appears as an branch of TPM v1.2 with
changes to adapt it to mobile platforms. Nevertheless, as
a consequence of the physical resource limitation of mo-
bile devices, but MTM implementation was never widely
adopted. Later TPM Mobile (McGill, 2013) was proposed
as an attempt to adapt the TPM 2.0 specification to mo-
bile devices. Although that specification was designed to
cover implementation on a wide range of mobile devices,
TPM Mobile was only implemented in a small number of
devices due to the lack of trust in a software-based solu-
tion. There have been alternative implementations of a
mobile TPM, such as simTPM(Chakraborty et al., 2019),
which relies on the SIM card available in mobile platforms
to avoid most of mobile TPM and MTM issues without the
need for additional hardware. Notwithstanding, the main
disadvantage with this solution was that the SIMs were not
tamper-proof resistant, unlike the TPM chip, and there-
fore cannot be considered as a reliable secure element.

As a consequence of these issues, GlobalPlatform2,
a non-profit association, defined specifications for secure
chip technologies, gathering the fundamental security re-
quirements of mobile devices and describing the ideal se-
curity guard for mobile devices. This specification, known
as Trusted Execution Environment (TEE), quickly gained
traction on the market – to the point that a number of
companies that were initially reluctant to the initiative
finally joined. TEE architecture proposed by GlobalPlat-
form highlighting the separation of worlds3 as the most
relevant design novelty. Nokia and Trusted Logic were
the first in the long list of companies that joined, followed
by other companies such as ARM, NVIDIA (Corporation,
2015), AMD, ST, Qualcom, Ericsson and Samsung, which
are now fully involved in the development of the TEE spec-
ifications. As of today, TEE is a well-defined security el-
ement, whose technical specifications not only define the
architecture but also the services available for the appli-
cations running on top of it4. GlobalPlatform initially fo-

2https://globalplatform.org/
3Some authors refers to realms instead of worlds, both terms are

the same concept along this paper
4http://globalplatform.org/specificationsdevice.asp

2

Table 1: Definitions
Acronym Definition Acronym Definition
AES Advanced Encryption Standard PXN Privileged execute never
ALSR Address Space Layout Randomization QSEE Qualcomm Secure Execution Environment
AMBA Advanced Microcontroller Bus Architecture QSEECOM QSEE Communicator
APB Advanced Peripheral Bus REE Rich Execution Environment
AXI Advanced Extensible Interface ROM Read Only Memory
BTB Branch Target Buffer RO-IoT Reboot Oriented IoT
CCNT Cycle Counter Register ROP Return Oriented Programming
CLI Command Line Interface SC Stack Cookies
CPS Cyberphysical Systems SCA Side Channel Attack
CRT Chinese Remainder Theorem SCM Secure Channel Manager
DACR Domain Access Control Register SCP Secure Channel Protocol
DCISW Data Cache line Invalidate by Set/Way SCTRL System Control Register
DDR Double Data Rate SGX Software Guard Extensions
DFA Deterministic Finite Automata SHA Secure Hashing Algorithm
DoS Denial of Service SMC Secure Monitor Call
DVFS Dynamic Voltage and Frequency Scaling SMMU System Memory Management Unit
EMFI Electromagnetic Fault Injection SoC System on a Chip
FDE Full Disk Encryption SVC Service Message
FIFO First In First Out SVE System Vulnerability & Effectiveness
FIQ Fast Interrupt Query SW Secure World
FPGA Field-Programmable Gate Array Syscall System Call
GP Guard Page TA Trusted Application or Trustlet
IoT Internet of Things TCB Trusted Computing Base
I/O data Input/Output data TCG Trusted Computing Group
IP Intellectual Property TCI Trustlet Connector Interface
IRQ Interrupt request TEE Trusted Execution Environment
L1 Level One TEEv TEE Virtualized
L2 Level Two TLC Trustlet Connector
MTM Mobile Trusted Module TLV Type Length Value
NW Normal World TPM Trusted Platform Module
MMU Memory Management Unit TZ TrustZone
MPU Memory Protection Unit TZASC TZ Address Space Controller
ObC On Board Credential TZMA TZ Memory Adapter
OEM Original Equipment Manufacturer UART Universal Asynchronous Receiver/Transmitter
OTA Over The Air UUID Universal Unique Identifier
OP-TEE Open Portable TEE UXN Unprivileged Execute never
OS Operating System VBAR Vector Base Address Register
OU Organizational Unit XP Execution Protection
PLL Phase-Locked Loop XPU External Protection Unit

cused on TEE standardization (System Architecture speci-
fications and client API interface). Later, GlobalPlatform
released a specification for the Secure OS, including the
internal API and TEE applications.

Figure 1: Relationship between the Secure World and the Normal
World.

The main goal of the TEE is to guarantee the secure

execution of programs5. For this purpose, TEE isolation
capability enables a secure area for handling sensitive data,
thus eliminating the need to trust the software running in
the device. In particular, ARM TrustZone (Pinto and San-
tos, 2019), which is the most extended trusted hardware
TEE systems rely on, defines two protection domains or
realms: the Secure World (SW) and the Normal World
(NW).

2.2. TEE Capabilities and Applications

The TEE design enables to implement security-
sensitive services by taking advantage of its assurance and
secure storage functionalities necessary to preserve both
the confidentiality and integrity of data and code. In cur-
rent implementations, the decision to deny or allow the
installation of a new service in the TEE is made by the
TEE developer playing the role of a central authority.

Among the different capabilities offered by the TEE,
we highlight the following:

• Isolated execution: This functionality allows the sep-
arated execution of applications, some of them in a

5Henceforth, we use indistinguishably the terms trustlets and
trusted applications (TAs) to software executed in the TEE as secure
programs, applications or processes.

3

secure environment and others in a normal environ-
ment. It is highly recommended that isolation is
achieved by means of hardware mechanisms in or-
der to prevent this mechanism from being controlled
from the non-secure world. Isolated execution can
be considered as the primary purpose of a TEE.

• Secure Storage: The TEE provides Trusted Storage
of data and keys. Trusted storage is tied to a par-
ticular TEE and device. This prevents any attacker
from accessing and modifying the stored data unless
they have the appropriate permissions.

• Platform Integrity: Secure boot ensures both the in-
tegrity and authenticity of the platform. It allows
the trusted OS execution environment to be instan-
tiated from a trusted root within the TEE. The pro-
cess uses assets linked to the TEE and isolated from
the normal OS. Besides, according to the TEE de-
scription, the TEE is protected against some physical
attacks. However, note that attacks breaking the IC
package are beyond the scope of TEE protection.

Based on the above core capabilities, existing TEEs,
such as TrustZone, can build a large variety of functional-
ities and applications. Some examples are secure creden-
tials generation(Elenkov, 2013), secure key storage (An-
droid Keystore, dmverity)(Cooijmans et al., 2014), secure
boot (Dietrich and Winter, 2009; Ge et al., 2014), ker-
nel integrity verification, (e.g., Samsung’s TIMA (Azab
et al., 2014)), trusted peripherals and sensors (Liu et al.,
2012), mobile payments using emulation of secure ele-
ments (Pirker and Slamanig, 2012; Pirker et al., 2012),
digital content protection systems (Tögl et al., 2013; Ah-
mad et al., 2013), services to manage and issue online
tickets (Hussin et al., 2005, 2006; Tamrakar et al., 2011),
cloud storage access authentication mechanisms (Shin
et al., 2012; Ekberg et al., 2012), security of IoT de-
vices (González and Bonnet, 2013; Guan et al., 2017), and
many more.

2.3. Trusted Execution Environment & ARM TrustZone
architecture

As mentioned above, ARM TrustZone is a particular
implementation of TEE that enables the isolation of CPU
state, memory, I/O data, etc. It is built around the con-
cept of protection domains, namely the SW and NW, as
aforementioned. This system-wide approach assign two
virtual cores (in the SW and NW respectively) to each
physical processor, together with the mechanism to se-
curely switch between both realms (cf. Qualcomm TEE
in Figure 2). In most cases, a security-oriented OS is de-
ployed on the TEE, which operates and hosts a number of
trusted applications (TAs).

The separation between worlds is articulated by differ-
ent interrupts, I/O hardware, memory views, etc. while
prioritizing requests from the SW. This process is orches-
trated by means of the monitor mode mechanism, which

Figure 2: TEE Worlds in Qualcomm TEE. Communication between
wolds is mediated by a priviledged OS daemon by SMC calls.

plays the role of the gatekeeper by switching between
realms (Sabt et al., 2015).

The secure monitor call (SMC) is the component in
charge of actually implementing the monitor mode mecha-
nism. SMC requests switching between worlds (secure and
normal). Besides, the SMC provides an API within sys-
tem calls (syscalls) for inter-realms communications. For
example, whenever a process running in the NW needs any
service provided by a TA, a run state transfer is requested
from the NW to the SW kernel (Holding, 2009).

Memory sharing between realms is articulated with two
functions SMC TYPE FAST and SMC TYPE YIELD6.
SMC TYPE YIELD is used for the allocation of a mem-
ory area belonging to the NW to be shared with SW, which
is particularly useful when high-volume data transfers are
involved and in the case of synchronous trusted applica-
tions are needed (e.g., video streaming protection). On
the other hand, SMC TYPE FAST enables a mechanism
for fast information exchange. It relies on the use of reg-
isters with up to a total of four variables to perform data
transfers between the two realms.

In Figure 2, the Exception Level (EL) realms separa-
tion is depicted. In this line, N-EL1 means Exception level
1 in non-secure world while S-EL0 is Exception level 0 in
secure world. The grey shaded area corresponds to the
components that implement the secure world execution.
Whereas the blue boxes are components that belong to
the non-secure world.

Other components, such as the TZASC and TZMA,
are used for memory management SRAM and DRAM re-

6ARM Trusted Firmware. (n.d.). (ARM & Linaro) Retrieved
from https://www.trustedfirmware.org/

4

on a TrustZ.pdf on a TrustZ.pdf

Secure World

Client Apps

TEE Internal APIs

Monitor mode

TEE internal APIs

TAs

Normal World

Secure OS TEE
driverNormal OS

Hypervisor

SMC SMC

AXI Bus with NS-bit

TZASC TZMA TZPC

DRAM SRAM Peripherals

EL0

EL1

EL2

EL3

Generic Interrupt Controller

Figure 3: Architecture on TZ-assisted SoC

spectively – as depicted in Figure 3. These implement pro-
tection schemes for the static on-chip and for the dynamic
off-chip memory. As such, they prevent attempts to access
memory within a memory controller by the TZ kernel from
the normal global environment. In such a case, the CPU
aborts and reacts according to the configured specifica-
tion, i.e. rebooting the device due to a violation (Holding,
2009).

We notice how TrustZone architecture does not define
the way to implement TAs accesses with TrustZone ser-
vices. Indeed, there are TZ-based implementations with
different service definitions, but all sharing the common
architecture described.

Access properties are another aspect related to mem-
ory management articulated through memory page per-
missions. For example, those memory regions with write
capability are filled up at runtime, and therefore must be
located in a modifiable memory area. On the other hand,
as in the case with code pages, which only have read and
execute permissions, they may not be modified in any way.
The Domain Access Control Register (DACR) mechanism
is in charge of restricting the access of TEE applications
to memory regions of other trusted applications. This is
implemented in the Memory Management Unit, or MMU.
Certain bits (linked to a given memory region) are checked
by MMU in the DACR register to specific access proper-
ties. In addition, the MMU is in charge of enabling read
and write access to the memory allocated to that domain.

Bus management connectivity is articulated using the
APB and the AXI components. AXI is the bus inter-
face implementation for the main system at the chip level.
APB implements a low-bandwidth single peripheral bus

interface. This interconnection between AXI and APB is
implemented with a bridge. Among the different capabil-
ities offered by the AXI interface is the separation of pe-
ripherals into realms, allowing both reliable and unreliable
ones. For this purpose, it makes use of an extended signal-
ing system together with a flag bit (NS-bit). There is no
similar mechanism for the APB bus so the security is man-
aged by the aforementioned AXI-to-APB bridge (Holding,
2009).

We have so far focused on describing the most relevant
components to facilitate the understanding of the attacks
and flaws presented in the following sections. A full de-
scription of the ARM architecture is beyond the scope of
this paper, but interested readers can refer to (Ngabonziza
et al., 2016) for further details on it.

2.4. TEE Implementations

At present there are many different implementations
of TEEs, and in the literature it is possible to find differ-
ent criteria to classify them. The taxonomy presented in
Figure 4 focuses on how the TEE is implemented. On the
one hand, there are implementations in which the TEE is
implemented with software, such as Overshadow, Open-
TEE, OPTEE, etc. On the other hand, there are various
hardware implementations of TEE, including Intel SGX,
Qualcomm, and others. Another parameter that is used to
classify the different implementations is the level of priv-
ilege with which they are executed, i.e. if we are dealing
with a privileged or non-privileged TEE. Non-privileged
TEEs support multiple deployments, allowing to include
a new functionality by simply adding new instances with-
out extending the system trusted computing base – which

5

TEEs
TEEsTEEs Processes/

VMs

System Software
Monitor

Normal World

Secure World

TEEs
TEEsTEEs Processes/

VMs

System Software

HW(CPU)

Normal World

Secure World

TEE

Processes/
VMs

System
Software

Normal World

Secure World

So
ftw

ar
e-

ba
se

d
TE

E
Ha

rd
w

ar
e-

ba
se

d
TE

E

Non-privileged TEE Privileged TEE

TEE
TA

TEE kernel

Processes/
VMs

kernel

Hardware

Normal World
Secure World

TA

Figure 4: TEE Implementation Classification.

would increase the attack surface of the system. Most of
these TEEs make use of a secure monitor from the design
stage (which is usually software-based) or by taking direct
advantage of hardware-supported secure enclaves (SGX,
TPM, AMD-SEV, etc.). On the other hand, priviledged
TEEs, in most cases, have access to all system resources.

Table 2 provides a classification of existing TEE im-
plementations according to the taxonomy introduced in
the previous paragraph – that is, hardware vs software
implementations and privileged vs non-privileged imple-
mentations. Note, however, that there are two distinct
groups of implementations among the privileged TEE
hardware-based implementations. Firstly, there are com-
mercial solutions (Trusty (Google), QSEE (Beniamini,
a), Trustonic (Felton), etc.) and secondly, academic or
open source solutions (OPTEE (Brand), Kinibi (Lapid and
Wool, 2018), SafeG (Takei et al., 2009), etc.). In addition,
we propose TPM as an alternative for Trusted Execution
Environments.

2.5. Implementation Details of Qualcomm’s Secure Exe-
cution Environment

It is common practice for NW applications to require
interaction with others running in SW. KeyStore is the
process in charge of managing cryptographic keys in An-
droid, which requires direct communication with the Key-
Master. This is a trusted application that provides key
secure management using TrustZone capabilities (e.g., se-
cure storage, isolation, etc.). Yet we have to consider that,

on the basis of QSEE, user-mode applications are not al-
lowed to perform SMC calls to enter the SW. This lim-
itation is due to the fact that kernel-space privileges are
required. In order to overcome this limitation, the Linux
kernel driver QSEECOM – QSEE Communicator – allows
user-space processes to access several TZ-based operations,
such as those related to the communication with the loaded
TAs or the actual loading of the TAs in the SW.

For the implementation of Secure Monitor calls from
the kernel space an interface was included in the driver.
This interface between QSEECOM and the SW is known
as SCM, which is considered the widest attack surface of
the TEE since is one of a small number of communication
channels between the outside world and the SW. There-
fore, a limited number of processes are allowed access to
QSEECOM for the sake of security. As such, Beniamini’s
et al. (Beniamini, b) implementation limits the number of
processes which can access the QSEECON from the nor-
mal world to only four:

• SurfaceFlinger (running with “system” user-ID):
This is a system service in charge of the composition
of the application and system surfaces, for which a
shared buffer is enabled.

• DrmServer (running with “drm” user-ID): This ele-
ment is in charge of managing digital rights.

• MediaServer (running with “media” user-ID): This
element is in charge of handling multimedia services.

6

Table 2: TEE Implementations
Non Privileged TEE Privileged TEE

Commercial Open/Academic

H
a
r
d
w

a
r
e

T
E

E

SecureBlue++(Boivie and Williams, 2012) Google Trusty(Google) Linaro OPTEE(Brand)
Sanctum(Costan et al., 2016) Qualcomm QSEE(Qualcomm, 2018) ARMithril(Shah et al., 2012)

AMD-SEV(AMD, 2021) Trustonic t-base(Felton) GenodeTEE(Feske, 2015)
OSP(Cho et al., 2016) Samsung TZ-RKP(Azab et al., 2014) Microsoft TLR(Santos et al., 2014)

TrustICE(Sun et al., 2015b) Aurora(Lammens) Case(Zhang et al., 2016a)
Sanctuary(Brasser et al., 2019) Sierraware(SierraWare) TrustOPT(Sun et al., 2015a)

Intel SGX(Intel, 2014) Solacia SecuriTEE(Solacia) SafeG(Takei et al., 2009)
Haven(Baumann et al., 2015)* mTower(Drozdovskyi and Moliavko, 2019) VimoExpress(Oh et al., 2012)

SCONE*(Arnautov et al., 2016) T6(TrustKernel) Kinibi M(Trustonic, 2017)
Graphene-SGX*(Tsai et al., 2017) ObC (Kostiainen et al., 2009)[deprecated] Andix OS(Fitzek et al., 2015)

Panoply*(Shinde et al., 2017)

S
o
ft

w
a
r
e

T
E

E

Overshadow(Chen et al., 2008)
Virtual Ghost(Criswell et al., 2014) Nested Kernel(Dautenhahn et al., 2015)

Inktag(Hofmann et al., 2013) OpenTEE(McGillion et al., 2015)
Flicker(McCune et al., 2008) MicroTEE(Ji et al., 2019)

TrustVisor(McCune et al., 2010) SoftTEE(Lee and Park, 2020)
Multizone(Pinto and Garlati, 2020) Trustshadow(Guan et al., 2017)

Utango(Oliveira et al., 2021) Kinibi(Lapid and Wool, 2018)
Sego(Kwon et al., 2016) SKEE(Azab et al., 2016)
SICE(Azab et al., 2011)

• KeyStore (running with “keystore” user-ID): This el-
ement is in charge of creating, storing and managing
cryptographic keys.

Note that vulnerable processes should not have access
to the TEE because if the vulnerability is exploited by an
attacker, the attacker could gain access to any application
running in the SW bypassing the Linux kernel filter on
the process. A known weak point is the language in which
trusted applications are written. Most applications use
the C language instead of safe languages that potentially
decrease the possibility of vulnerabilities.

The TrustZone fast and yield commands used for mem-
ory sharing are implemented by Qualcomm7 using two
functions: SMC TYPE YIELD and SMC TYPE FAST.
The first one allocates a common memory area for com-
munications between worlds. When this function is called
a memory record is populated. The record includes the
the maximum buffer size, the buffer headers, as well as
offsets of the data to be sent and received. The second is
used to start a short-term communication where the data
to be exchanged are relatively small. Either function can
be used to issue an SMC or to call a service.

As previously mentioned, the first defense mechanism
in this situations is the DACR provided by ARM, which
prohibits altering any of the TZ kernel pages. Some
recent TrustZone-enabled Qualcomm System on a Chip
(SoC) integrate an additional mechanism for memory ac-
cess control. This hardware-based Memory Protection
Unit (MPU) are pre-configured to mark as write-protected
certain memory regions predefined by the manufacturer.

In Qualcomm these MPU units are called External Pro-
tection Units (XPUs). Among the tasks carried out by
the XPUs is prevening access from the NW to the SW
and to the memory areas restricted by the manufacturer.
As an example, the XPU mechanism is used to allocate

7Qualcomm Product Security. Retrieved from:
https://www.qualcomm.com/company/product-security

TrustZone kernel code into write-protected memory areas,
which are checked during the secure boot of the system to
ensure that it has not been altered.

One sensitive aspect is how to load trusted applica-
tions and their revocations when Qualcomm secure boot-
ing actually takes place. In this line, regular Executable
and Linking Format (ELF) files are signed by Qualcomm.
These files attach a single hash table segment, which is
a signature blob with the hashes of each ELF segment,
along with the certificate chain. Verification of the sig-
nature with the concatenated blob of hashes is performed
with the public key of the attestation certificate (the last
one in the chain). Validation is performed by comparing
the hash of the root certificate and the Root Key Hash
stored on the device. It is stored in the ROM of the device
and integrated in the SoC.

We now briefly describe how the chain of trust workflow
is implemented. The procedure begins with the issuance of
a hardware-bound key for the validation of the certificates.
Later, these certificates can be used to validate the binary
signature. In addition, Qualcomm includes additional Or-
ganizational Unit (OU) fields with information necessary
for security enhancement in the binary signatures.

Note that since TEEs are considered entities with high
privileges the Normal World has no inherent mechanisms,
not even DACR or XPUs, to protect against unautho-
rized memory accesses and manipulations from the Secure
World. Therefore, it is trivial gaining access to the NW
kernel for an attacker in case a TEE becomes compro-
mised, even if no vulnerabilities were present in it.

3. Taxonomy of Attacks

Although TEE has been designed to provide advanced
means of secure code execution that traditional operating
systems do not implement, they can still be attacked in a
myriad of ways. Here we describe the taxonomy of attacks
that will be used throughout the article. In addition, Fig-

7

Types of Attacks

Software-based Architectural Side Channel Micro-Architectural

Kernel

Syscall

Particular Implementations

Isolation

Wide Surface

Memory Exposure

Boomerang

Kernel by driver

Downgrade

Interfaces & TCB

Dynamic Voltage &
Frequency Scaling

CLKscrew

VoltJockey

Cache Timing

Privilege Escalation

Kernel Exploits

Syscall Hijacking

TrustNone

HTC QSEE Extensions

Kinibi

Bootloader Unlocking

Extracting ROM

Next Generation Rootkits

Prime+Probe

Evict+Time

Flush (Evict) + Reload

Flush+Flush

Speculative Exploits

Out-Of-Order Transient Execution

RIDL

ZombieLoad

Fallout

Foreshadow

Load Value Injection (LVI)

Micro-Architectural Data Sampling (MDS)

Weiß

ARMageddon

Separation Barrier

Prime + Count

TruSpy

Electromagnetics

Rowhammer

BADFET

PlunderVolt

PlatyPus

Figure 5: Taxonomy of Attacks to TEE Implementations.

ure 5 shows a summary of every specific attack for each
category.

• Software-based attacks (Section 4) are dedicated
to exploit different elements of software stack, in-
cluding operating system and the applications run-
ning on it.

• Architectural attacks (Section 5) exploit funda-
mental design flaws in the hardware architecture of
the system, rather than software bugs.

• Side-Channel attacks (Section 6) are focused on
the transmission of data between the Normal and
Secure Worlds by modulating the behaviour of some
system elements, such as execution times or power
consumption.

• Micro-architectural attacks (Section 7) are a
type of attack focused on micro architecture ele-
ments, such as exploiting the cache or the Branch
Target Buffer (BTB).

4. Software-based Attacks

Programming errors cause functional inconsistencies
that can lead to bugs in the memory protection mech-
anisms, in the security mechanisms themselves, or even
in peripherals configuration. These bugs can appear ran-
domly during the system execution, either during its val-
idation with the trusted kernel, the secure monitor, the

boot loader, or the applications themselves. Such bugs
can be exploited through various means (e.g. parameter
validation, buffer overflows) for a wide range of purposes
– from revealing sensitive information to exploiting the
kernel. In this section, the most representative TEE vul-
nerabilities caused by implementation bugs are described.
Since each implementation has particularities in its archi-
tecture, which directly affect the way Trusted Applications
(TAs) interact, we describe some of the most relevant cases
exemplified in concrete implementations.

4.1. Kernel Attacks

This section describes direct attacks on the system ker-
nel, including privilege escalation attacks, kernel exploits
and a new generation of rootkits.

4.1.1. TrustZone Privilege Escalation

Qualcomm’s implementation, known as QSEE, is used
in several smartphones – such as Pixel, LG, Xiaomi, Sony,
HTC, OnePlus, and Samsung, among other devices. Due
to its importance, there are various software-based attacks
that specifically target the Qualcomm implementation.
One of such attacks focuses on accessing the protected
memory of QSEE through escalation of privileges (Beni-
amini, 2015b, b,c, 2016a).

Figure 6 shows the first three-stepped (Beniamini,
2015b) privilege escalation attack. This three-step attack
can exploit a QSEE vulnerability, although it is certainly
the third step that is directly related to the TEE. For this

8

Figure 6: Three-stepped Privilege Escalation Attack.

reason, we tiptoe over the description of the first two steps
briefly. As seen in the figure, during the first step, an at-
tacker without granted permissions can run the Android
MediaServer application, which is vulnerable in the Nor-
mal World. Despite not having permissions granted, the
application allows access to the QSEECOM driver to ini-
tiate direct contact with the Secure World, thus achieving
communication with the WideVine application running in
the Secure World. In the next step, making use of the
MediaServer vulnerability described above, the attacker
can access the Secure World indiscriminately through the
SMC, allowing him to control the kernel. Finally, in the
third step, once in control of the kernel, the attacker can
run any application he wants in the Secure World. More-
over, since the privileged kernel applications have direct
access to the TEE then the attacker can implement sev-
eral types of privilege escalation attacks to run shellcode
within the TrustZone kernel.

Once the attacker gains control of QSEECOM, addi-
tional steps need to be executed At this point, the attacker
can execute SCM calls to write a zero DWORD in any spe-
cific memory address, in an operation known as ‘zero-write
primitive’. This can be used to disable the mechanism
used for checking bounds on all memory addresses passed
to the SW. Once this operation is disabled, the attacker
can exploit other SCM calls creating different primitives.
For example, once the control mechanisms are invalidated,
the attacker can use the SMC calls to transform what was
a zero-w primitive to an arbitrary ‘w-r primitive’. Once
the attacker has achieved write permissions, he still has
to identify those memory regions where to host his own
shellcode, so as to bypass the TZ kernel pages protection
mechanism. Since privileged kernel applications have di-
rect TEE access, making use of SMC syscalls enables an
important attack vector that may result in privilege esca-
lation attacks.

The Domain Access Control Register (DACR) register
from ARM MMU is responsible for protecting the Trust-
Zone memory by controlling accesses to it. However, by
making use of the arbitrary write primitives already de-
scribed, it is possible to modify the value of the DACR
and thus enable reading and writing the memory regions
controlled by the mechanism. By doing so, the attacker
can now insert his shellcode in memory areas reserved for
execution within the kernel. Moreover, since these areas

are never used by the kernel, any modification in them
goes unnoticed.

4.1.2. Kernel Exploit in TrustZone

This exploit describes how it is possible to take control
of the operating system kernel through a series of chained
exploits. This opens the door for the attacker to gain
privileges to the TrustZone kernel. An example of this
exploit is provided by Beniamini et al. (Beniamini, b,c),
which describes how a series of chained exploits provide
an alternative way to the previous attack. These exploits
take advantage of buffer overflows and vulnerable syscalls
to ultimately execute arbitrary code with TrustZone kernel
privileges.

Once the attacker has gained control of the QSEECOM
driver, located in the NW, the trusted WideVine appli-
cation (in the SW) can be exploited by causing buffer
overflows, using a deprecated function called PRDiagVer-
ifyProvisioning. Once the buffer overflow is achieved, any
code within the context of the trusted application can be
executed. Still, although the attacker can make use of
a Return-Oriented Programming (ROP) chain to execute
his code, the application’s executable code fragments are
inserted as read-only. For this reason, the code execution
must be split into two parts, where any part of code that
does not require QSEE privileges will have to be executed
within the Normal World.

At this point, access to the TEE is allowed indirectly
through the use of certain (privileged) applications as in-
termediaries – and these, in turn, can then establish com-
munication with the TEE through the driver. Even so,
the attacker is restricted to running code in the QSEE
user space, since he is not yet granted TZ kernel privi-
leges. However, the attacker can exploit vulnerabilities in
syscalls API provided by the TZ kernel.

The SVC instruction allows applications to call the
syscalls of the TZ. This instruction is handled using the
Vector Base Address Register (VBAR). Whenever a syscall
is performed, control of the code and the execution flow
passes to the NW kernel. However, the TZ only performs
very basic validity checks on the provided input buffers:
all arguments provided in legitimate application syscalls
are accepted as valid. Therefore, once the attacker has
identified a vulnerable syscall, he can use WideVine’s TA
to exploit the TZ kernel and modify the syscall handling

9

functions. All that remains to be done is to identify a
suitable memory area for inserting the shellcode. Despite
of TA code segments can be considered write-protected
due to the DACR mechanism, but in fact these segments
are still susceptible to be overwritten with the described
syscall bug.

Thereafter, as a consequence of disabling the DACR
mechanism, the attacker can insert his shellcode anywhere
in the application code. Likewise, he may also use mutated
syscall control functions to execute his shellcode within the
context of the TZ kernel and execute any arbitrary code.
Note that classical security measures such as ASLR8 could
prevent common code execution and privilege escalation
attacks, but they are not implemented in this context.

Precisely, Project Zero (Beniamini, 2017) provided an
analysis on the implementation of such security measures
in TEEs. They conclude that Qualcomm and Kinibi, the
leading exponents of TEE implementations, only imple-
ment very few security mechanisms. In the case of Kinibi,
it does not offer any type of ASLR mechanisms, forcing
all applications to be loaded at a fixed memory address.
On the other hand, Qualcomm’s TEEs only offer a weak
implementation of ASLR. Therefore, the security bound-
ary between the TZ kernel and applications is very fragile,
at least in concrete implementations like QSEE. In fact,
when the attacker manages to enter the Secure World and
takes over an application, the communication channel be-
tween TZ kernel and application is constructed in such a
way that no input validation mechanism is implemented,
and it is trivial for the attacker to compromise the kernel.

4.1.3. Next Generation Rootkits

A series of rootkits considered to be new generation
rootkits are included in this section, as they take advantage
of several of the weaknesses already described and even
others yet to be described related to architecture, side-
channel or micro-architecture to explore weaknesses in the
system.

Roth (Roth, 2013) shows weaknesses in TEE combined
with a specific architecture. They also describe how these
weaknesses allow the development of rootkits such that
they can control the system in a way that goes unnoticed.
Since the SW has privileged access to the memory, it also
has the ability to modify the NW kernel structures. More-
over, it can also block the NW from accessing its own
memory. In particular, Roth provided several mechanisms
to hide the visibility of the code running in the SW in order
to hinder its detection. Some of these rootkits exploit flaws
in the TEE architecture itself to exploit vulnerabilities as
described in section 5, but these rootkits are software and
although they also make use of attacks from other cate-
gories, they are eminently software for the most part and
are therefore included here.

8Address space layout randomization (ASLR) is a computer secu-
rity technique used for preventing memory corruption vulnerabilities
exploitation.

4.2. Attacks using System Calls

This section includes attacks that make use of the set
of system calls. Particular attacks such as TrustNone and
syscall hijacking belong to this category.

4.2.1. Syscall Hijacking

Certain attacks focus on performing syscall hijacking in
the context of the TEE in order to gain access to protected
information. Along these lines, Beniamini et al. (Beni-
amini, 2016a) describe an attack that can extract any key
residing in the TEE, such as the full disk encryption (FDE)
key. This allows the attacker who successfully perpetrates
the attack to decrypt and access the contents of any disk
on Android devices. This attack makes use of the differ-
ent exploits described in sections 4.1.1 and 4.1.2. For the
sake of clarity, an overview of such attacks, including a
description of how they are chained together, is shown in
Figure 7.

By exploiting a vulnerable multimedia application
(WideVine), the attacker gets to manage the QSEECOM
driver and gains access to the memory of other sensitive
applications despite the use of the XPU memory protec-
tion feature. The use of reverse engineering techniques
revealed that the FDE key (used for disk encryption by
Keymaster’s application in Android) is not protected by
a hardware-bound key. This key is protected by another
TA, i.e., by software, and therefore it is accessible from
the TZ kernel. Since all QSEE applications have access to
TZ kernel code segments as long as they run in the kernel
context, WideVine can launch a shellcode, host it in the
kernel and gain access to Keymaster’s application mem-
ory. The last step consists of inserting the shellcode into
the TZ kernel and running it through the WideVine TA.
The shellcode will then access the Keymaster’s memory
and therefore will be able to extract the FDE key from
the MasterKey application. Further details are described
below.

In order to succeed in inserting the shellcode in the TZ
kernel code segments, it is necessary to bypass various se-
curity mechanisms. The first mechanism to bypass is the
DACR memory protection mechanism. The MMU man-
ages access to any memory region, using bits of the DACR
register. However, there is a piece of code inside the TZ
core that can change the value of DACR, known as the
DACR modifying gadget. If the attacker calls the DACR
modifying gadget to set all bits to 1, then all memory re-
gions are then enabled and available to perform read and
write operations on them. The first goal of the attacker is
to execute this DACR modifying gadget.

In order to execute this gadget, the attacker can take
advantage of the design of the system call table. System
calls are used indirectly using a system call table. Al-
though this table cannot be changed, as it is protected by
the memory protection unit (XPU) pointers, the reference
to this table is not protected: it must reside in a modifi-
able memory region, because it is only filled at runtime.

10

Normal World Secure World

3r
d

At
ta

ck
2n

d
At

ta
ck

1s
t A

tt
ac

k Exploiting
Media
Server

Exploiting
Linux

Kernel

Exploiting
Application
with SMCs

Application Permission

Bypassing DACR memory
protection mechanisms

Accessing
Keymaster
memory
region

Exploiting
Application

with
QSEECom

Exploiting
TZ Kernel

TZ Kernel
Permissions

Bypassing XPU
memory protection

mechanism

achieving

achieving

FDE Key
achieving

Figure 7: Three attacks Overview.

Therefore, the attacker can execute a sycall hijacking at-
tack: he stores in memory a fake system table with one
system call pointing to the DACR modifying gadget, and
then the reference to the system call table is modified so
it points to the malicious one. This way, once the (mod-
ified) syscall is called, the DACR modifier gadget will be
invoked instead – modifying the DACR register to allow
write and read access.

The second security mechanism that needs to be by-
passed is the memory protection unit (XPU), which pre-
vents access to protected areas by unprivileged code. The
issue here is that the attacker can execute code in the ker-
nel context, yet the source of the code is in the trusted
WideVine application – and is therefore considered un-
privileged. The attacker then must find a way to insert
the malicious code in the TZ kernel and to invoke it.

The attacker first needs to implements a script to iden-
tify unprotected code regions in the TrustZone kernel.
This allows finding a cave to host the final shellcode of
the exploit, which will be considered as priviledge code
and will bypass the XPU protection mechanism. Once the
script successfully finds a cave and the shellcode that ex-
tracts the encryption key from the memory disk is inserted,
a final step remains: how to execute such shellcode. For
example, the attacker can overwrite the qsee-hmac() sys-
tem call. As a result, when the qsee-hmac() is called from
the malicious QSEE application, instead of the intended
function the shellcode will be executed. This allows the
FDE key to be extracted from the KeyMaster application

and then written to the shared buffer.
The cause of this attack is that disk encryption is not

implemented with a hardware-based key. The key is gener-
ated by software and stored inside the TZ kernel memory.
Since the key resides within the software, once the TZ ker-
nel is exposed, it can be easily extracted. Therefore, the
disk encryption system offered by Android becomes resis-
tant to different attacks, such as those of the TZ kernel
security or TA’s own keymaster. Any flaw in either of
them can potentially leak the FDE master key.

In addition to the ability of applications to map physi-
cal memory, there is another attack gap arising from TEE’s
debugging mechanisms. What privilege escalation attacks
are and how they work has already been described in sec-
tion 4.1.1. Making use of this type of attack, Shen (Shen,
2015) implements an attack on Huawei’s TEE. It exploits
a syscall that allows any application to perform a stack
dump in a memory area belonging to the NW. This be-
comes the attacker aware of the physical address space of
the GlobalTask to have enough information to successfully
implement the attack.

4.2.2. TrustNone

Communication with the TZ kernel is facilitated
through the SMC instruction, as aforementioned. This
allows the NW to use system calls that are exported by
the TZ kernel, for which an API is provided in the An-
droid/Linux kernel.

XPU units protect those on-chip and off-chip memory
regions that contain the TZ kernel. These are configured

11

by the first boot loaders. This allows only certain runtime
environments to access certain memory areas.

Beaupre (Beaupre, 2015) describes that a number of
TZ vulnerabilities are related to system calls. With spe-
cial emphasis on those that do not implement any valida-
tion, or do not do it properly. More specifically, in the
user input, at this point the attacker could safely write as
many zeros as desired in a memory area, thus bypassing
the implemented security mechanisms obtaining read and
write permissions in the TZ kernel context.

The attack is particularly relevant because it affects all
devices using the Snapdragon 805 SoC and thus the QSEE.
In his experiment, Beaupre used the exploit to unlock the
bootloader of a Motorola Snapdragon 8059

4.2.3. Attacks on HTC QSEE Extensions

Beyond the vulnerabilities that can be found on QSEE,
there are also vulnerabilities that affect certain QSEE
extensions from specific manufacturers. For example,
in (Keltner and Holmes, 2014), Keltner et al. describe the
implementation of a new attack against a version of Qual-
comm’s QSEE used and extended by HTC. To create this
attack, they reverse-engineered that specific implementa-
tion/version of QSEE, which proved highly successful in
finding a number of vulnerabilities in the code added by
the HTC extensions.

Examples of such vulnerabilities include i) flaws in the
zero-write primitive in certain address range allowing to
circumvent all memory operations security checks, and ii)
flaws in the tzbsp oem memcpy function, which give the
attacker full control of all the memory. As a consequence
of all the weaknesses, it is easier for the attacker to securely
extract data and modify validation mechanisms in memory
regions.

4.2.4. Implementation bugs

The previous sections have focused on the QSEE TEE
by Qualcomm. As expected, this is not the only vulnerable
implementation of the standard: other vulnerabilties have
also appeared in other implementations of the TrustZone
technology, such as Kinibi (Lapid and Wool, 2018) from
Trustonic.

One important work in this area is proposed by Ko-
maromy et al. (Komaromy, 2018) that described certain
important vulnerabilities affecting the Trustonic imple-
mentation. These six vulnerabilities were caused by soft-
ware bugs, and most of them are located in components
that manage inter-realms communications.

Before describing these vulnerabilities, it is important
to provide a very brief introduction on the Trustonic ar-
chitecture. Trustonic (cf. Figure 8)includes an appli-
cation connector or gatekeeper known as TLC (trustlet
connector) that enables communication to pass through

9https://www.qualcomm.com/products/snapdragon-processors-
805

to the Kinibi device. An interface is offered to NW by
TLC that can be accessed through UNIX domain sockets.
These domain sockets make use of MAC/DACs schemes
for access control and only certain applications, such as
tlc server, have access to them. In addition, sanity checks
are performed on TEE requests, and are further protected
through SELinux.

Komaromy (Komaromy, 2018) found a way to circum-
vent this access control by disassembling the tlc driver bi-
nary. It was found that although almost all commands
implemented a process for checking the caller’s permis-
sions, there was one command that, for some reason, did
not have this security check implemented. This vulnera-
bility, Vuln 0, allowed an arbitrary user-space application
to make use of the handler and initiate a session to a TA
and subsequently send any commands at will to it.

One of such trusted applications (TA or trustlet) is ES-
ECOMM, which is used for secure payment transactions.
ESECOMM implements the SCP03 Global Platform Se-
cure Channel Protocol, where messages are sent encoded
in TLV (Type-Length-Value) format via APDUs (Appli-
cation Protocol Data Units). The trusted application per-
forms certain parsing ckecks on the TLV-encoded messages
but it does not control whether the maximum number of
TLVs to store for each structure is exceeded. This may
result in an overflow (Vuln 1) attack, which opens up the
range of possible attacks since these structures are allo-
cated on both the heap and the stack. In addition, the
TLV parser does not properly check the input buffer (allo-
cating TLVs) length – the only check performed is whether
the offset remains unchanged until the end of the buffer, it
does not check that it is less than it. Therefore, this allows
an attacker to trivially read out of bounds (Vuln 2).

However, these are not the only vulnerabilities that
affect the ESECOMM trustlet. There is another stack
buffer overflow in the “parse ca cert() function. Again, no
check is made on the length of the TLV input value, so it is
possible that another buffer overflow may occur. Although
the size of TLVs is restricted to 0x400 bytes, since the size
of the input buffer is limited to 32 bytes, the proposed
restriction is not sufficient to prevent the attack (Vuln 3).

There is another function, parse scp param(), with
a similar vulnerability. This function is used to parse
the Diffie-Hellman (Diffie and Hellman, 1976) parameters
used for establishing a secure channel between Kinibi and
the secure element. As in the previous case, the function
parses and checks most of the parameters but there is one
parameter that is not fully checked, thus enabling another
overflow (Vuln 4) attack.

Finally, the fifth vulnerability (Vuln 5) is a memory
corruption vulnerability that requires the user to have root
privileges. The main problem lies in the common buffer
shared by that both worlds, NW and SW. In this buffer,
known as TCI, there is a flaw in the way memory offsets
are specified. In particular, within the buffer there is a file
(envelope len) with the offset where the response begins.
The tlc driver is in charge of setting this field, but any

12

Figure 8: Kinibi Architecture.

other trusted application can also do it. As a result, if an
attacker is able to become root, he would be able to ar-
bitrarily modify this field and thus specify whatever write
offset he wishes, even beyond the buffer bounds.

While we have focused on vulnerabilities that affect the
Kibini implementation, that does not mean that there are
no flaws in other TrustZone implementations. For exam-
ple, in (Keltner and Holmes, 2014), the authors describe
the procedure to read and write operations on arbitrary
memory locations within the SW using the failed memory
validation mechanism. Similarly, Rosenberg et al. (Rosen-
berg, 2014) observed a faulty SMC memory check mecha-
nism. This flaw enables an attacker with kernel privileges
to write into the SW.

4.2.5. Unlocking Bootloader Attacks

There are other TrustZone attacks that target the
bootloader of smartphones, such as the attacks described
by Rosenberg et al. (Rosenberg, 2013, 2014). In the first
paper, Rosenberg describes a write vulnerability in Mo-
torola smartphones. This vulnerability affected a specific
SMC call whose role was to allow the kernel in the NW to
obtain values stored on the memory side of the safe world.
However, an attacker can abuse this SMC call to overwrite
the memory in the secure region – in particular, the flag
responsible for granting the TrustZone kernel permission
to blow Qfuses. As a result, the attacker can blow Qfuses
through another SMC call, in order to indicate that the
bootloader is unlocked. This way, an unsigned image (e.g.
a tampered Android firmware) can be loaded.

In the second paper, Rosenberg (Rosenberg, 2014)
identifies a new vulnerable SMC function. The function,
known as qsee is ns memory(), checks whether a certain
memory range belongs to the SW. This function involves
an uncontrolled primitive write based on an overflow. This
vulnerability enables a chain of attacks that gives the at-
tacker the possibility of circumventing all validation checks
and execute any code in safe memory region, unlocking the
bootloader in the process.

4.2.6. ROM Extraction Attack

There are other attacks, such as (Basse, 2016) by Basse
et al., whose goal is to bypass the TrustZone authentica-
tion mechanisms to extract the boot image (BootROM)
from a device. In ARM devices, an UART interface is
available in the device to give access to a root shell and
a high-level debug message interface. Still, the BootROM
image is stored in a secure memory area within the SoC
to prevent unauthorised access or changes. To bypass the

security measure two conditions must be met: i) the MMU
tables must be extended to include the BootROM address
(thus allowing access to this partition), and ii) the user
needs kernel privileges.

Although an attacker can exploit existing overflow er-
rors in the SMC interface to gain kernel privileges, the
access to the memory is limited due to the authentication
routine that protects the MMU images. However, in some
cases, this authentication routine is a mere hash function.
Therefore, an attacker can update the MMU table to in-
clude the BootROM, recalculate the hash of the MMU
table, and write both values in the device. A custom SMC
can then be executed, which will access the BootROM par-
tition through the tampered MMU table.

5. Architectural Attacks

This section presents the main security issues arising
from the architecture of today’s TEE systems. We distin-
guish between attacks made possible by the elements of
the architecture dedicated to the isolation between worlds
(SW vs NW) and attacks on memory protection mecha-
nisms.

5.1. Isolation Focused Attacks

Attacks on inter-world isolation include (a) memory
exposure due to physical memory mapping in the NW by
applications, and (b) information leakage due to TEE de-
bugging mechanisms.

5.1.1. Memory Exposure

Certain TAs require an efficient shared memory mech-
anism with the ability to exchange large volumes of data
between worlds, which has led to security holes in some
TEE implementations.

Beniamini (Beniamini, 2016b) describes how an at-
tacker, starting with only TA privileges running in the
NW, can get full control of the kernel, which is due to
the fact that Qualcomm’s TEE implementation allows an
arbitrary application to allocate an arbitrary area of the
Normal World. For this, it is only necessary to use a call to
the SW, which in turn allows the attacker to take control
of the operating system. This would enable him to sweep
through all the physical addresses of the kernel, manipu-
late it and introduce backdoors.

Fortunately this is not the case for all implementations.
In the case of Trustonic TEE, TAs cannot read from or
write to physical memory.

13

TEE Daemon
PTRSAN

User Application

Rich OS
PTRSAN

Trusted Application

Trusted OS

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

data PT
R data

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
RPT

R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
R

PT
Rdata PT
R dataPT
R

PT
R

PT
R

Non-secure WorldSecure World

Normal Pointer Sanitized Pointer Malicious Pointer Unknown Data

User Mode

1a 1b 1c

2

2

3

4

Supervisor Mode

Figure 9: An attacker bypasses pointer sanitation by hiding it inside the structure to send to applications.

5.1.2. BOOMERANG attack

Boomerang attacks (Wagner, 1999) exploit flaws that
appear in the design of the communication between realms.
This type of attack is made possible by the fact that the
trusted OS has no restrictions on the memory addresses
it can access and the normal OS has no way of checking
if the entity performing this action is entitled to do so.
The attack starts with an application or user in the NW
passing an unauthorized memory address to a SW call. If
the address is not filtered out due to the lack of standard
memory sanitation mechanisms, the attacker could read
and/or write that memory, as detailed in section 7.1.

Figure 9 shows an overview of the attack. The at-
tacker’s goal is to send a privileged address to the applica-
tion (4). For this purpose, and in order to circumvent the
sanitation process, a filled data structure is transferred
– which among other things contains an address pointer
without annotating it. There are three possible ways to
transfer the data to the existing mode: (1a) by using the
Daemon TEE in charge of pointer sanitation with back-
ground execution, (1b) by taking advantage of an API
that is used by the application, and (1c) by using a library
for the aforementioned API. The NW OS kernel makes a
call to the SMC with the purpose of switching worlds and
transferring the filled data structure to the SW (2). Once
the data structure is in the SW OS, a check is made to
see if the pointers actually point to memory areas from
the SW. As the pointer comes from the NW, it passes the
test and the trusted OS passes the structure to the TA (3)

without any further checks.
Based on how an attacker bypasses pointer sanitation,

Machiry et al. (Machiry et al., 2017) successfully attacked
a wide variety of TEE architectures. Using a static anal-
ysis tool, they were able to perform analysis of several
TEE implementations (QSEE, Kinibi, OP-TEE (Brand),
SierraTEE (SierraWare), and Huawei) and applications on
them, searching for BOOMERANG vulnerabilities. The
results of the study revealed several vulnerabilities in the
analyzed platforms, which affected a very high number of
mobile devices. This work has enabled TEE vendors to
implement specific fixes in their environments.

5.2. TEE Wide Attack Surface

Attacks to memory protection mechanisms include cer-
tain bugs appearing in software drivers (executed in kernel
space), others appearing in the interfaces shared among
different TEE components and broad interfaces.

5.2.1. Kernel contains driver execution

Most systems require software drivers to communicate
with specific hardware. Some TEE drivers are meant to
interact with devices that handle sensitive (e.g. a biomet-
ric sensor) and for that reason they are executed in the
TEE kernel. Therefore, an attacker could exploit any er-
ror in these drivers in order to access the privileged area
of the system. In fact, some implementations like OP-
TEE (Brand) and Snapdragon (Rosenberg, 2014) allow
the execution of all the code labelled as privileged within
the kernel.

14

5.2.2. Downgrade Attack

Trusted applications are signed using the TEE trusted
public key. If the application passes the verification, the
system will accept it and execute it. This is exploited
by downgrade attacks, which consist of loading old buggy
binaries to take control of the system. Chen et al. (Chen
et al., 2017) demonstrated the effectiveness of this kind of
attack.

Nowadays, in order to prevent such attacks, the major-
ity of TEEs implementations include some kind of mecha-
nism to control the application versioning. However, Beni-
amini (Beniamini, 2017) analysed a number of applications
and their respective updates and realized that all shared
the same version number.

Application developers are therefore urged to make use
of the version control mechanisms provided by the TEE
vendors. This shows that even when protection mecha-
nisms are in place it is important to make use of them or
they are rendered useless thus opening the door to attacks.

5.2.3. Broad Interfaces to Attack

Opening secure system has always been tricky and dan-
gerous. In order to extend functionalities the number of
interfaces offered by TEE is growing and this has led to
the development of several exploits. For example, the ex-
ploit on the TZ linux driver (Beniamini, 2015a) in An-
droid. Trusted applications are also being provided with
more functionality, which is also sensitive from a security
point of view.

TEEs should allow developers to minimise the Trusted
Computing Base (TCB) of their applications to main-
tain a proper security/efficiency balance: the larger the
size of the TCB, the more error-prone implementations
are (Cerdeira et al., 2020). It is worth noting that the size
of the TCB varies considerably for TEE each implementa-
tion, ranging from 97KB for Tegra’s TEE to 1.62MB for
Qualcomm’s.

6. Side-Channel Attacks

As mentioned above, memory protection mechanisms
in TEE implementations are rather weak or lacking. In
this section we show how exploiting these mechanisms lead
to side-channel attacks (SCA). An SCA is an attack that
exploits certain types of information such as power con-
sumption data to leak information about cryptographic
material and operations.

Fault-injection is a particular kind of side-channel at-
tack consisting on inducing physical- or software-based
faults (also referred to as glitches) in a computation to
expose secret information. Due to their relevance, we fo-
cus on this type of attacks. This type of attacks include
the application of high voltages, temperatures or electro-
magnetic (EM) pulses in order to expose electronic com-
ponents to unexpected conditions. Electromagnetic fault
injection (EMFI) attacks (Maistri et al., 2014) are proba-
bly the most relevant and difficult to protect from. These

attacks have provided very successful results when imple-
mented on a huge number of commercially available inte-
grated circuits.

Some of the most relevant fault-injection attacks
are known as Dynamic Voltage and Frequency Scaling
(DVFS), which allow the software to regulate device volt-
age and frequency based of each CPU execution thread.
This makes it possible to modify and monitor the power
consumed since this value is directly related to both fac-
tors (frequency and operating voltage). Some of them,
namely CLKscrew (Tang et al., 2017), PlunderVolt (Mur-
dock et al., 2020b), Platypus attack (Lipp et al., 2021)
and VoltJockey (Qiu et al., 2019a) are based on produc-
ing dynamic voltage and frequency scaling, where power
traces can be collected by software and there is no need to
physically access the device itself. Additionally, Rowham-
mer (Lipp, 2016) and BADFET (Cui and Housley, 2017)
are attacks based on the application of electromagnetic
pulses.

6.1. CLKscrew

CLKscrew takes advantage of a feature available in
modern devices that enables software control of both CPU
voltage and frequency for the primary purpose of power
administration. Tang et al. (Tang et al., 2017) show a suc-
cessful implementation of the attack on an ARM device,
namely the Nexus 6 smartphone. This attack consists of
inducing failures in certain operations by causing calcu-
lation errors in the CPU, allowing the attacker to obtain
essential information to deduce secret keys from an ARM
TrustZone.

To cause erroneous behaviour, the attacker can over-
clock and undervolt the CPU, thereby exceeding the CPU
fault induction boundaries. There are no protection mech-
anisms to prevent the CPU from being able to operate
at faulty frequency and voltage combinations. Also, since
hardware regulators10 have their operating range precisely
at the TEE separation, this opens the possibility that the
attack can occur even in the same SW execution.

Once frequency-voltage combinations of faulty be-
haviour have been identified, the attacker makes use of
a manipulated kernel driver that manages to link the vic-
tim’s thread to a particular kind of kernel, leaving the rest
of kernels to other applications. This avoids the threat of
possible collateral damage during the attack. In addition,
interrupts are disabled during fault injection, which allows
circumventing any possible context switching.

A representation of the attack is depicted in Figure 10.
The attack requires some preparation: it starts with clear-
ing out any cache residue, since in the following phases of
the attack a cache-based profile is used to signal the start

10Hardware can include voltage/frequency regulators, which con-
tain a phase-locked loop (PLL) circuit that generates a synchronous
and adjustable clock signal for the digital components.

15

ATTACK THREAD

VICTIM THREAD

2 PROFILING

3 TIMING ANCHOR

4 PRE-DELAY

FAULT

5 6

Victim targeted subset

Figure 10: CLKscrew fault injection Attack.

of the victim’s execution (step 1). Then, the attacker mon-
itors the victim’s code execution by inspecting certain ex-
ecution points, called “Timing Anchor” point, especially
in the instant prior to the execution of the target code
where the fault is to be injected (steps 2-3). There are
some cases where the accuracy of the Timing Anchor is
not good enough, thus it is necessary to achieve a more
precise synchronization of the attack. To fine-tune the ac-
curacy, the attacking thread remains in a loop for a period
of time, after which it will proceed to the next step of the
process (step 4). Note that a distinguishing feature of this
attack is that the frequency of the victim’s CPU kernel
undergoes changes while the attack is taking place, raising
the frequency value to a specified one and over a specified
period – and then restoring normal conditions (steps 5-6).

Using this attack technique, it was possible to unveil
the secret key of a previously manipulated implementation
of AES executed in the Secure World. The implementa-
tion consisted of a simple decryption tool that received
encrypted messages as input and returned the plaintext,
decrypted with a stored secret key. The attacker was able
to unveil the AES secret key by inducing various glitches
during the AES decryption phase and applying differential
fault analysis (DFA) attack.

The authors also showed a second type of attacks on
TZ with CLKscrew, which they call self-signed application
loading. In this case, CLKscrew can be used to modify the
RSA signature chain of firmware images in TZ, which is
the method used for verifying their authenticity. Firmware
images to be updated contain the updated code, a signa-
ture of the firmware’s hash to maintain its integrity, and
a certificate chain. During the upgrade process, a veri-
fication of the signature is performed on the hash of the

new firmware to be uploaded, together with a secret key
linked to the hardware (this key is stored in the Secure
World). Using CLKscrew, the authors are able to crack
the signature process to force it to produce a hash that
is identical to the hash of a different firmware. Conse-
quently, the verification mechanism accepts to install an
illegitimate firmware as if it were correctly signed by a
trusted entity.

6.2. PlunderVolt

Plundervolt (Murdock et al., 2020b) relies on the in-
ducing changes to the voltage received by the processor,
causing the program to change its intended execution path.
Pundervolt exploits the lack of a stable power supply volt-
age.

Plundervolt circumvents the protection limits of the
TEE memory encryption engine by abusing an undocu-
mented voltage scaling interface, which allows privileged
software adversaries to lower the tension and cause pre-
dictable failures in the SW. With this technique, the theft
of secrets is achieved, even in the presence of memory en-
cryption technology.

For instance, Plundervolt can break the integrity and
(indirectly) the confidentiality of Intel SGX (Murdock
et al., 2020a). Indeed, as a consequence of Plundervolt
it is possible to break the processors instruction set spec-
ification, making it possible to successfully attack bug-
free code, tested code and even formally verified code.
Unlike other Intel SGX attacks, which abused architec-
tural design flaws to break the confidentiality of enclave
secrets, the authors demonstrated that even the integrity
of seemingly secure enclave computations can no longer be
trusted. The authors in addition to succeeding in breaking

16

cryptographic code show how Plundervolt can be used to
induce memory safety vulnerabilities into bug-free code.

6.3. Platypus Attack

Platypus (Lipp et al., 2021) is based on exploiting the
mechanism of accessing the interface of Intel’s RAPL -
Running Average Power Limit, which reveals information
about power consumption. The weakness lies in that any
user of the system can access this interface.

Platypus shows that by performing a statistical study
with a certain number of evaluated data, it is possible to
appreciate and identify variations in energy consumption.
By assigning different Hamming weights to what is loaded
into memory, different code instructions can be identified.
This makes it possible to monitor the control flow of ap-
plications, which is very valuable to a potential attacker.

Using Platypus, an attacker has also the ability to de-
duce sensitive information such as secret keys. The au-
thors show how a potential attacker, who starts from an
unprivileged state, is capable of obtaining AES new in-
structions (AES-NI) keys from Intel SGX and the Linux
kernel, infer secret instruction streams, break the randomi-
sation of the kernel address space layout (KASLR) and
finally achieve the establishment of a time-independent
covert channel.

6.4. VoltJockey

VoltJockey (Qiu et al., 2019a) is an attack based on dy-
namic voltage and frequency scaling (DVFS). This attack
differs from others (e.g. CLKscrew) in that it performs
manipulations on voltages instead of frequencies. This
allows the generation of failures in the target hardware.
VoltJockey is notable for being more stealthy and there-
fore more difficult to avoid than similar attacks such as
CLKscrew. Some authors (Qiu et al., 2019a; Qui et al.,
2020) have shown how TrustZone’s AES key and RSA-
based authentication can be cracked on an Android smart-
phone using VoltJockey. This is one of the most effective
attacks for obtaining protected TrustZone credentials.

VoltJockey is an attack on TrustZone based on hard-
ware flaws using software-controlled voltage manipulation.
It exploits the DVFS voltage management vulnerability.
In (Qiu et al., 2019a; Qui et al., 2020) the authors imple-
ment VoltJockey on an ARM-based Krait multicore pro-
cessor, whose core frequencies can be different but the pro-
cessor voltage is controlled by a shared hardware regulator.
The Trust-Zone protected AES key is achieved and thus
guide the RSA-based signature verification to obtain the
target plaintexts. An implementation of VoltJockey was
used to break Intel SGX in (Qiu et al., 2019b) and in an
advance scaling based fault injection (Qiu et al., 2020).

6.5. Rowhammer

The Rowhammer attack (Lipp, 2016) exploits the par-
ticular design of some modern DRAM memory in which

memory cells are getting closer and closer. This compli-
cates isolation and makes DRAM cell capacitors sensitive
to electrical interference thus potentially leading to mem-
ory corruption. As such, the repeated access to a row of
memory can cause bit flipping (shifts from 0 to 1 and vice
versa) in adjacent rows.

Consequently, Rowhammer takes advantage of this iso-
lation problem to affect the RAM rows storing TrustZone
data, even bypassing the NS bit protection mechanism.
The authors of the attack, from Carnegie Mellon Univer-
sity and Intel, tested this phenomenon on Intel and AMD
systems using a program that generates multiple accesses
to DRAM memory. They managed to cause errors in most
of the DRAM modules tested (110 out of 129) from three
major manufacturers.

6.6. BADFET

In recent years, electromagnetic fault injection (EMFI)
attacks are becoming a major threat. This is as a conse-
quence of the massive increase in CPU speed and the re-
duction of the size of the components, which hinders other
types of injection attacks.

BADFET (Cui and Housley, 2017) is based on second-
order EMFI attacks, which do not target the CPU but
other components of the system. In fact, this attack can
be applied to any arbitrary component (such as memory,
buses, controllers, etc.) that the processor makes use of
during sensitive operations. This approach can signifi-
cantly reduce the temporal and spatial resolution require-
ments of the hardware needed for EMFI injection.

The attack consists of two steps. During startup, BAD-
FET applies electromagnetic radiation on the system’s
RAM memory. These memory-induced failures trigger a
condition that exposes the uBoot’s debugging Command
Line Interface (CLI) to attackers, which enables to switch
between the Normal and Secure worlds. Once the CLI is
available, during the second step, a buffer overflow-based
vulnerability is exploited in the SW. This allows attack-
ers to obtain write, execute and read privileges and, as a
result, the attacker achieves a new CLI that is capable to
fully execute commands in the SW.

7. Micro-Architectural Attacks

The last category of this taxonomy include attacks tar-
geting micro-architectural elements. This section sum-
marizes the attacks considered as micro-architectural as
they have been applied to TEEs. These attacks focus on
micro-architectural details as caches, Branch Target Buffer
(BTB) unit, etc.

7.1. Cache Timing Attacks

As previously mentioned when the architecture of
the TZ was described, cache memory is shared between
SW/NW. Since the secure parts of the cache are not ac-
cessible from the NW, bidding for the use of the cache

17

Shared Cache

Memory

Process Attacker

1:Flush memory line

2: wait for next bit

3: time measure to reload line:
3.1: if fast line is accessed
3.2: if slow no access

4: Repeating the process

Processor

…

Shared memory object

Core 1 Core 2 Core N

Figure 11: Flush+Reload attack workflow.

lines does not take place, and therefore a substantial im-
provement in system performance is achieved. However,
information leakage through caches is an open avenue for
attackers. These attacks are usually performed by extract-
ing hardware information such as as timing computations,
cache access attempts and even the sound released while
the computation is taking place.

In a cache timing attack, an adversary is capable of
inferring secrets from the secure world by monitoring ac-
cesses made by the victim in a shared memory. Generally
speaking, a cache timing attack has two phases – timing
and correlation, and is typically used for leaking crypto-
graphic keys or another sensitive information. During the
timing phase, the attacker sends raw data to a specific
(cryptographic) function to measure the time spent on
each encryption. The total execution time can be highly
affected by the number of cache hits and misses produced
during the execution. Once the attacker gathers enough
measurements, he is able to match the entries with the ex-
ecution times, and thus infer the key. These methods rely
on active cache manipulation designed to produce data
with a higher level of entropy, which in turn results in a
fairly smaller data set to perform the attack.

Next, we elaborate on how this type of attack affects
TZ with an specific example. The ARM chip is built in
such a way that a shared CPU cache is used to improve
the performance of data and instructions processing in the
SW and NW. This cache integrates a mechanism, known as
the TZ NS-bit, dedicated to ensuring separation between
the two worlds. Included in this separation are the access
rights for the resources available in each world. The oper-

ation of this mechanism is simple: the bit is used to tag
each cache entry, such that if any NW process attempts
to access a SW entry a miss occurs (Kim et al., 2012).
Although this cache tagging mechanism may appear to be
secure, recent works have revealed that its design present
several flaws that can be exploited using different strate-
gies (Irazoqui et al., 2015, 2016; Gras et al., 2017). Still,
a successful implementation of this attack is not trivial
among other reasons because the attacker must be able
to manipulate the cache in order to monitor the victim’s
process.

Gotzfried et al. (Götzfried et al., 2017) showed a cache-
timing attack affecting Intel SGX enclave (Intel, 2014).
The authors demonstrated that, in practice, SGX cannot
resist its designated attacker model (i.e. attackers gaining
root access to the system) when dealing with side-channels.
In fact, during the experiments the authors realized that
the side-channel attack surface increases significantly in
the SGX scenario. This is because without SGX some
capabilities are restricted to the kernel. In the presence of
Intel SGX the attacker acquire new capabilities, such as
the possibility to operate the power management control
(PMC).

This type of attacks have also been tested against ARM
based CPUs. Wei et al. (Weiß et al., 2012) present the
implementation of an attack against a virtualized ARM
system. Based on the conclusions of this work, Spre-
itzer et al. (Spreitzer and Plos, 2013) studied the appli-
cation of this timing attack on different Android smart-
phones. Later, these authors (Spreitzer and Gérard, 2014)
achieved substantial improvements in the results by reduc-

18

ing the key space. Bogdanov et al. (Bogdanov et al., 2010)
presented another attack against AES table implementa-
tions based on the exploitation of collisions. They used an
ARM9 microprocessor for this purpose.

The use of branch predictor is another way to imple-
ment cache-timing attacks on TrustZone. In the latest pro-
cessor designs, a component called the branch target buffer
unit (BTB) is included. This allows the storage of target
addresses obtained from the computation of the forking in-
structions performed, with subsequent retrieval when the
instructions are predicted (Takahashi et al., 2018). As a
consequence of BTB being shared between both worlds, it
is possible to perform attacks such as Prime+Probe (ex-
plained below) to reveal data. The process starts with a
priming of the BTB. The victim process is then allowed
to start, which will be evict the attacker’s BTB entries.
Once the attacker acquires control of the execution, he
initiates the associated branches in order to detect predic-
tion errors. A relevant aspect in the internal operation of
the BTB is related to byte granularity rather than cache
line granularity. This enables a new attack vector by sig-
nificantly increasing the spatial resolution of the probing
mechanisms. Using this approach, it is possible to retrieve
a private key directly from certain hardware-backed key-
stores (Ryan, 2019b). Some examples of memory-based
attacks using different techniques are briefly described be-
low.

7.1.1. Prime+Probe

The Prime+Probe attack (Osvik et al., 2006) begins
with the attacker filling the cache with data. Subsequently,
the attacker monitors how the cache changes while the vic-
tim process is running. From the changes detected in the
cache, the attacker infers information about the victim’s
operation and behavior.

From the attacker’s perspective, the main advantage of
this technique is that there is no need to carry a shared
memory map between attacker and victim. This results in
a very suitable mechanism for attacking the SW with very
few additional resources required.

7.1.2. Evict+Time

This attack (Osvik et al., 2006) is based on the exe-
cution time of the victim process. The process is run and
then all cache entries that have been used by it are deleted
(evicted), in such a way that the execution time is modi-
fied in the next execution. The differences between execu-
tion times are then analyzed and correlated with all cache
changes so as to extract useful information. For example,
this type of attack can be launched against a cryptographic
algorithm, say AES, to expose the cryptographic material.

7.1.3. Flush(Evict)+Reload

Yarom et al. (Yarom and Falkner, 2014) describe the
Flush(Evict)+Reload technique. Flush + Reload works
based on an abuse of shared code/data by making use of
the clflush cache flush instruction. It is necessary that

victim and attacker physically share at least one page of
data. This is possible since shared libraries are normally
only loaded once physically into memory. Instead, differ-
ent applications access the same data (physically) since
the page tables point to the same physical address. The
process is as follows, when the attacker uses the clflush
command with an address pointing to this shared data, it
is completely flushed from the cache hierarchy. As the data
is shared, the attacker can hit on this data in the cache.
Repeatedly the attacker empties the shared data with the
victims as Figure 11 depicts, then the attacker remains on
standby until the victim executes, at which time it per-
forms the reload of the data. From this moment on, if the
attacker gets a cache miss, i.e. the victim has not accessed
the data, and therefore has not returned it to the cache.
On the other hand, if he gets a cache hit, that is, the vic-
tim did. In this way, the attacker can distinguish hits from
misses because the memory access time is very different.

The potential of this attack lies in the fact that the
attacker can reach a very high level of knowledge of the
cached data. As memory is slower than the processor,
this fact produces bottlenecks. Recently used lines are
stored in the cache, which improves the performance.
Since Multi-processors Systems-on-Chip (MPSoCs) com-
ponents can directly access the hardware information, like
communication infrastructure or physical addresses, the
Flush+Reload technique on MPSoCs is prone to be imple-
mented in these settings.

7.1.4. Flush+Flush

The Flush+Flush mechanism (Gruss et al., 2016b)
could be seen as a variation of the Flush+Reload attack
implemented in reverse. It begins in a similar way to the
one described above: by emptying the cache lines that are
shared. Immediately afterwards, the victim program can
be executed. The attacker then performs another cache
flush while calculating the time taken to perform this flush.

The idea behind this attack is that the time spent in
flushing the cache can change depending on the cache lines
that have been loaded while the victim was running. This
allows the attacker to infer certain information from the
victim’s process. Although this attack is more complex,
this technique has the advantage of going unnoticed more
often than previously described ones. The reason is that
many attack detection mechanisms rely on the presence of
cache misses to identify possible attacks.

7.1.5. Wei Attack

Wei et al. (Weiß et al., 2012) demonstrate that cache
timing attacks can bypass virtualization barriers. The ex-
periment made use of replay-resistant authentication by
performing all encryption operations in the secure world.
The attack targets the authentication scheme, and for this
purpose a reduction in the key space is pursued until it
can be effectively implemented by brute force.

This attack is structured in two phases: offline and on-
line. During the offline stage, the attacker gathers multiple

19

encryption operations using a known, all-zero key. In the
other phase, the attacker’s goal is to capture the key that
is unknown to him. Once enough synchronization data
has been collected, the correlation between the two sets
is established, thus obtaining the possible values of each
byte of the key. To find the values, a calculation is per-
formed based on a probability threshold. The mechanism
is initiated by inserting a value in the list, which contains
those possible values of the key, just at the instant when
a byte of the key appears with a probability higher than
the established threshold.

This work was developed in 2012 when the TEEs were
just beginning to get standardized by GlobalPlatform and
deployed in consumer devices. For this reason, rather
than on a TEE, Wei et al. (Weiß et al., 2012) present
an implementation of the attack on virtualized systems.
Although this attack was not implemented in TEE, the
authors showed that cross-isolation attacks are effective,
given both worlds share CPU and cache. This partic-
ular implementation was performed on a Beagleboard11,
which is basically an ARM-based development board that
integrates an L4 microkernel – which is the virtualization
layer. During the experiment, they took measurements
of the time spent on each encryption operation using the
ARM CCNT register, as well as the total count of CPU
clock cycles since the last restart. They took different im-
plementations of the AES to study the weaknesses that
appear in general computation and concluded that, to a
greater or lesser extent, they were all vulnerable. Two
years later, Wei et al. (Weiß et al., 2014) reproduced the
experiment – but this time in a multi-core environment on
a development board.

7.1.6. ARMageddon

Lipp et al. (Lipp et al., 2016) describe the implemen-
tation of a cache-timing attack, called ARMageddon, that
uses only unprivileged applications and target Android de-
vices based on ARM architectures. To understand the at-
tack we first need to be aware that ARM level 2 caches are
not inclusive for the most part. This implies that it is not
possible to guarantee that there are entries in lower-level
cache shared by the CPU cores thus hindering cross-core
attacks. This is because the last shared cache level is the
only way for an attacker to access and modify data from
other cores.

The attack is implemented on modern devices employ-
ing multi-CPU based designs, namely ARM devices with
non-inclusive L2 caches (the last-level ones). A new ex-
ploitation of cache coherency protocols and transfers be-
tween L1 and L2 is presented, achieving an workaround to
the difficulty of last-level cache non-inclusiveness. As men-
tioned above, devices with multiple CPUs do not share
a common cache between them. However, the protocols
used to retrieve line cache entries coming from different

11http://beagleboard.org/

CPUs follow coherence rules that allow exploiting certain
attacks more effectively. Among the different policies, we
find LRU (least-recently used) implemented by Intel or a
pseudo-LRU variant by ARM processors.

As ARM CPUs make use of a pseudo-random cache
replacement policy, this makes it difficult for the attacker
to predict which line to replace. This technique lowers
overall attack performance because it reduces the effects
of erroneous prediction of replaced lines. In this work,
the authors present results of the implementation of AR-
Mageddon on three different devices, each one with par-
ticular strategies for accurate unprivileged cache timing in
the attacks.

7.2. Separation Barrier

These are focused on exploiting the separation barrier
and since it is a micro-architectural element, they belong
to this category.

7.2.1. Prime and Count

The Prime and Count technique (Cho et al., 2018) aims
to reduce the noise caused by TZ’s own inter-world switch-
ing mechanism and the pseudo-random cache replacement
policies. On its own it cannot be used to snoop into the
secure world, however, it provides a proof of the existence
of a side channel that can be established between both
NW and SW. This attack has been used as a precursor of
more complex attacks such as privilege escalation.

The technique is implemented with a sender in charge
of writing data to the cache to signal a message to a re-
ceiver process. There are two strategies for implement-
ing this attack depending on whether they are applied to
single-core or multi-core architectures. The difference lies
mainly in the cache level to which it is applied, as the L1
cache is available to each CPU core, without being shared
by other cores. Unlike the L2 cache which, being larger,
can be shared among all the cores.

In the first phase of the single-core attack, the receiver
primes the L1 cache filling it entirely. Then, the sender ap-
plication, which is running in the SW, then takes control
and writes new data to the L1 cache for signaling the mes-
sage. Finally, control is switched back to the NW which
can learn how many cache lines have been modified by the
sender. After each sender - receiver interactions a piece of
the message is covertly transmitted.

In the case of a multi-core attack, the difference is that
during the first stage both L1 and L2 caches are primed
and therefore invalidated. Meanwhile, the sender only
writes to the L2 cache. Clearly, this attack is more diffi-
cult to implement because the L2 is a global cache that can
be accessed by applications executed in parallel by other
cores. Nevertheless, messages can be encoded taking into
account the accesses made by other process and eliminate
noise that may appear in the channel by introducing error
correction codes.

20

7.2.2. TruSpy

The TruSpy technique (Zhang et al., 2016b) could be
considered the first proof-of-concept of “cross world” at-
tacks. A cross-world attack can be defined as one capable
of breaking the isolation between the normal and secure
worlds. The authors present two types cross-world attacks,
one of which requires kernel privileges and is easier to im-
plement, and the other one which can be successful even
with user-space privileges alone, but is more difficult to
execute.

In the privileged attack, the adversary has access to
both the virtual-to-physical memory mapping and the Per-
formance Monitor Unit (PMU), which offers statistics on
the operations of the processor and memory. This allows
him to perform cache priming and cache probing with ease.
The other attack only requires user-space privileges, but
is more difficult to execute because it lacks access to the
previously mentioned resources. Memory sharing between
the attacker and victim processes is not a requirement for
the implementation of either attack, since they are based
on the Prime+Probe technique.

The attack has five stages, as it is shown in Figure 12.
In step 1, the attacker finds memory addresses for cache
priming, if the virtual address space is mapped to the cache
sets. Once identified, the attacker performs the priming of
the cache (step 2). The victim process then takes control
and changes the state of the cache during its execution
(step 3). Finally, the attacker probes the cache for cache
misses (step 4) thereby identifying the lines that have been
modified by the victim. The difference between both states
is stored, and returns to the second step to keep iterating
– until a sufficient amount of data is recorded. Finally,
in step 5, the collected data is analyzed in order to reveal
secret information from the victim running in the secure
world.

7.3. Speculative Execution Attacks

Speculative attacks exploit a feature present in most
modern processors, called speculative execution, to leak
confidential information. In speculative execution, the
CPU attempts to anticipate the processing of certain fu-
ture instructions, which may or may not be necessary, to
optimize code execution. In case these instructions are
eventually not necessary, the changes are reversed and the
results ignored. However, not all changes are reverted (e.g.
cache changes) and leave traces that can reveal sensitive
data to attackers. Since speculative attacks are mainly fo-
cused on fault injection and cache timing techniques, they
have been included in section 7.

This category of attacks has become increasingly preva-
lent lately and they can hinder the isolation guarantees
of TEEs in different implementations. Some important
examples are Meltdown (Lipp et al., 2018) and Spec-
tre (Kocher et al., 2019). The basic idea behind Spectre
and its different variants is to trick the processor into spec-
ulatively executing sequences of instructions that should

not have been executed under normal circumstances. By
influencing which instructions are speculatively executed,
sensitive information is leaked from the victim’s memory
address space. Kocher et al. (Kocher et al., 2019) demon-
strate the feasibility of Spectre attacks across security do-
mains from both unprivileged native code and portable
JavaScript code.

A variant of Spectre for Intel SGX is known as Sgx-
pectre (Chen et al., 2019a). Sgxpectre bases its attack on
misusing the branch prediction unit (BPU) to cause the
victim to run certain secret leakage instructions. BPU are
certain hardware components that collaborate in the pre-
diction of conditional branches, indirect jumps and calls,
and function returns. To do so, the attacker must be able
to induce speculative access of unwanted data by deviating
the execution branch (within the same kernel) beforehand.
This enables the possible execution of malicious code on
another thread from the main domain – it could even be
the same thread – if the execution of the domain itself can
be interrupted and the BPU contaminated.

Meltdown (Lipp et al., 2020) is a software-based at-
tack that can be considered the precursor to the attacks
included in section 7.4. It exploits out-of-order execution
(a type of speculative execution) to allow an unprivileged
adversary to read the memory of other processes or vir-
tual machines, which may include personal data and pass-
words. Meltdown does not require the adversary to exploit
any existing vulnerability in the software and is operating
system independent.

Meltdown consists of three steps. In the first step, the
attack loads the contents of a memory location (inaccessi-
ble to the attacker) into a CPU register. This will even-
tually cause an unauthorized access exception rolling back
the execution. In the second step, the attacker defines a
sequence of instructions, by taking advantage of out of or-
der execution, that are capable of accessing the secret data
loaded into the register. Before the register is cleared due
to the exception, this transient instruction sequence will
encode the secret into the micro-architectural cache state
using the Flush+Reload technique, although it would also
be possible to use other similar techniques. In the last
step, the attacker recovers the secret data from the cache
state. By repeatedly performing these three steps over
different memory locations, the attacker can retrieve the
entire physical memory.

These attacks have been successfully implemented in
the most widespread TEE implementations such as Intel
SGX (Brasser et al., 2017; Götzfried et al., 2017; Moghimi
et al., 2017; Schwarz et al., 2017; Intel, 2014) and ARM
TZ (Lipp et al., 2016; Zhang et al., 2016b).

In addition to Meltdown and Spectre there are other
attacks that can be considered speculative. These include
the exploitation of the lack of prediction of conditional
forks, the poisoning of direct forks, as well as other com-
binations. Instruction timing can also be exploited, since
instructions whose timing depends on operand values can
leak information about operands without necessarily in-

21

Prime and Probe
Memory Allocation

(Step 1)

Prime
(Step 2)

Victim Execution
(Step 3)

Probe
(Step 3)

Result Analysis
(Step 5)

Figure 12: TruSpy attack workflow. Based on (Zhang et al., 2016b)

volving caches. The efficacy of this type of attacks to infer
private information (data, operations) has been proven, as
well as the ability to circumvent the barriers imposed by
address space layout randomization (ASLR) (Gras et al.,
2017; Gruss et al., 2016a).

Finally, another interesting attack vector is due to the
inherent leakage caused by latency differences between
cache inputs and outputs. This allows to infer keystroke
behavior (Gruss et al., 2016b, 2015), and even both sym-
metric AES (Irazoqui et al., 2015; Bonneau and Mironov,
2006) and asymmetric RSA (Zhang et al., 2012; Liu et al.,
2015) keys.

7.4. Out-of-Order Execution Attacks

Out-of-order execution is a subtype of speculative ex-
ecution that allows instructions to be executed as long as
the necessary resources to do so are available, even if they
do not follow the normal sequence of code execution. Out-
of-order attacks exploit the fact that the memory used for
the execution of these transient instructions can be ac-
cessed by other processes before being freed.

Foreshadow (Weisse et al., 2018), Micro-architectural
Data Sampling (Van Schaik et al., 2019; Minkin et al.,
2019; Schwarz et al., 2019) and Load Value Injection
(LVI) (Van Bulck et al., 2020) are attacks that belong to
this category.

7.4.1. Foreshadow attack

Until the publication of Foreshadow (Van Bulck et al.,
2018), Intel SGX was thought to be resistant to speculative

execution attacks. However, Foreshadow demonstrated it
was possible to read the the memory protected by SGX
and even extract the machines private attestation key.

Intel analyzed Foreshadow in an attempt to prevent the
cause of the attack and they realized that two additional
attacks were possible. These attacks, which are referred to
as Foreshadow-NG (next generation) (Weisse et al., 2018),
allow an adversary to read any information contained in
the L1 cache. This includes information from other virtual
machines running on cloud infrastructures.

Moreover, Foreshadow-NG might be able to bypass
some of the countermeasures that were created to prevent
other types of speculative attacks, such as Meltdown and
Spectre.

7.4.2. Micro-architectural Data Sampling Attack

Micro-architectural Data Sampling (MDS) vulnerabili-
ties allow adversaries to exfiltrate data from different CPU
internal buffers, such as the Store Buffer and the (Line) Fill
Buffer. They are called sampling attacks because the ad-
versary retrieves data being used by another process but
has no control over the memory positions the victim is
accessing. This is similar to sniffing CPU buffers.

Using this type of attacks, various researchers were able
to access the memory of Intel SGX (Van Schaik et al., 2019;
Minkin et al., 2019; Schwarz et al., 2019). In addition,
some authors (Ragab et al., 2021) showed that, despite
existing mitigations against speculative execution attacks,
existing CPUs are inadequately protected and sensitive

22

data can still be leaked.
Notable attacks within this category are the Rogue

In-Flight Data Load (RIDL) (Van Schaik et al., 2019),
Fallout (Canella et al., 2019a) and ZombieLoad (Schwarz
et al., 2019), which are described in more detail below.

Rogue In-Flight Data Load. RIDL (Van Schaik et al.,
2019) can leak data from a victim process even if that
process is not speculating (e.g., due to Spectre mitiga-
tions) and requires no control over address translation
data structures. Attackers running arbitrary unprivileged
code manage to leak information across arbitrary secu-
rity boundaries (JavaScript sandbox, process, kernel, VM,
SGX, etc.). In short, RIDL allows the attacker to listen in
on all communication between CPU components.

As with other attacks in this category, it originates
from optimizations that cause the CPU to serve specu-
lative loads. In this paper, authors present several ex-
ploits that allow data leakage by the following steps. First,
the victim code loads/stores data, the CPU performs the
load/store through internal buffers 12. Next, the attacker
performs a load and the processor uses data from the
buffers speculatively. Finally, it makes use of the spec-
ulatively loaded data in the buffer to extract the secret
value.

Fallout. Fallout (Canella et al., 2019a) takes advantage
of the internal Store Buffer, which is used to track pend-
ing store operations. This attack allows programs with no
special privileges to read data recently written by the ker-
nel, as well as to de-randomize the Kernel Address Space
Layout Randomization (KASLR).

When a code writes a value to memory, before getting
exclusive access to the address, the processor maps the
virtual address of the destination to a physical address.
However, instead of waiting for the computation to finish,
the processor inserts the value and the address into the
Store buffer and continues the execution of the program.
The Store buffer then resolves the address and stores the
data. The processor must control that obsolete values are
not loaded, which is the purpose of the Write Transient
Forwarding (WTF) instruction optimization. WTF marks
the load as faulty and forwards the partially matched store
value, which should not be forwarded. This behavior is
exploited by Fallout to obtain the value that WTF sends.
As in other cases, it uses a side channel (Flush+Reload)
to exfilter the value.

ZombieLoad. ZombieLoad (Schwarz et al., 2019) is a tran-
sient execution attack that takes advantage of the Fill
Buffer present in Intel CPUs. This buffer, which is used
during load instructions, retain data from memory load
requests until new ones overwrite them. Moreover, it is

12The paper primarily focuses on (Line) Fill Buffers, but other
buffers can be used such as load ports and store buffers

shared among the logical cores of a physical CPU. There-
fore, a malicious thread running on a logical core could
access the data of another thread running on a different
logical core within the same physical CPU, even if the
threads belong to completely different applications.

Under certain conditions, typically a faulty load opera-
tion due to erroneous data, speculative execution allows to
obtain other data not related to the load memory address
from the Fill Buffer. These data can be finally extracted
by some sort of side channel, such as those provided by
the cache subsystem.

7.4.3. Load Value Injection attack

Bulck et al. (Van Bulck et al., 2020) present the Load
Value Injection (LVI) attack, which is based on the in-
jection of erroneous data into the memory of a victim’s
program. Once the application detects in-memory data is
incorrect, the execution is rolled back. Before the mistake
is detected, during this short period of time, an attacker
can access the data from the victim, which may include
sensitive information from Intel SGX. A limitation of LVI
attacks is that the adversary cannot always control cer-
tain conditions, such as when a failure occurs, as they
take place in the victim’s environment.

Unfortunately, LVI is much more difficult to mitigate
than previous attacks as it requires compilation patches
that insert instructions to limit speculative execution after
every potentially vulnerable instruction. This impedes the
processor to optimize its execution (i.e., the pipeline is
serialized) resulting in a significant decrease of Intel SGX
computation performance – up to nearly 20 times slower.

Although the proof-of-concept implementation of the
attack targets Intel SGX, the authors argue that LVI at-
tacks are not unique to this enclave but the necessary con-
ditions are harder to be met.

8. Countermeasures

A number of attacks for different TEE implementations
have been described so far. To complete the picture, we
also review different countermeasures that have appeared
in recent years. Since these countermeasures have ap-
peared as a response to attacks, we present them following
the proposed taxonomy.

8.1. Countermeasures to Software-based Attacks

First, we describe the most relevant countermeasures
against software-based attacks to mitigate or reduce cer-
tain security issues of TEE components and applications.

TEE master key extraction is possible because the disk
encryption is based on a software key derived from infor-
mation stored inside the TrustZone kernel memory. Since
the key is inside the software, attackers can extract this
key. A countermeasure for this is the use of a secure
element with hardware-bound key functionality, such as
TPM.

23

Regarding validation failures, most commercial TEE
systems are written in C, which does not provide memory
protection mechanisms. As a result, developers introduce
memory violation errors, which in turn cause validation
failures. As a solution to this, in certain TEE systems such
as TLR (Santos et al., 2011) applications are interpreted
with .NET managed code – similar to a Java Virtual Ma-
chine (JVM). Even if this introduces an extra overhead in
the execution of the applications, this approach can be of
great help, as it provides certain tools (e.g. run-time mem-
ory checks and rubbish collection) that reduce the risk of
validation failures.

Other approaches follow the idea of using secure pro-
gramming languages for developing sensitive components
that will be deployed in TrustZone ecosystems. Among
them, RustZone (Evenchick, 2018) can be highlighted.
RustZone provides an extension of OP-TEE that enables
developing applications using the Rust programming lan-
guage. This language provides memory and thread safety,
which help to avoid validation errors and some concurrency
errors responsible for application software crashes.

Implementation errors caused by a lack of consistency
between the expected requirements of a software compo-
nent and its actual implementation are often encountered.
Techniques such as model checking, symbolic execution
and formal methods can be very useful to avoid these mis-
matches, and are very effective in ensuring that an imple-
mentation meets the proposed requirements. Although the
application of these methodologies is generally not trivial,
significant progress has been made in the use of formal
verification techniques to analyze the robustness of TEE
components. There are very interesting proposals such as
Komodo (Ferraiuolo et al., 2017), which consists of a mon-
itor that implements the Intel SGX enclaves specification,
and the memory manager known as MIPE (Chang et al.,
2017).

On the other hand, there are different tools for mal-
ware detection. This is important to consider, as many at-
tacks that target TEEs are deployed as malware. Among
such tools, Andrubis (Weichselbaum et al., 2014) combines
static and dynamic analysis techniques using unsupervised
learning (with clustering). Tools like DroidClone (Alam
et al., 2016; Alam and Sogukpinar, 2020) exposes similar
code segments (“code clones”) in a very accurate man-
ner for the detection of malware variants, while other ap-
proaches, such as DIFT (Andriatsimandefitra and Tong,
2015), focus on monitoring the information flow for mal-
ware detection by tracking selected data during the appli-
cation execution. There are other lighter alternatives such
as ThinAV (Jarabek et al., 2012), which combines a low
footprint on an Android device with the ability to leverage
various anti-malware services in the cloud.

There are other software-based countermeasures that
focuses on recognition and detection using machine learn-
ing techniques. For example, in (Soviany et al., 2018)
the authors describe a whole crypto-mining detection and
recognition methodology based on machine learning. An-

other approach, based on a structured heterogeneous in-
formation network (HIN), known as Hindroid, is presented
by Hou et al. (Hou et al., 2017). Authors integrate sev-
eral machine learning-based tasks with some optimisations
that are performed at various processing stages, including
the multi-core approach. In addition, techniques such as
DroidDream (Kim et al., 2016) can be used for malware
family identification, based on malware detection work
with dynamic analysis on real devices.

Finally, there are other solutions that pursue to em-
power the applications themselves such as PrOS (Kwon
et al., 2019) and TEEv (Li et al., 2019), which provide a
minimalist hypervisor implementation on the SW. This al-
lows applications to work on multiple guest OSs in a secure
and isolated way.

8.2. Architecture-based countermeasures

In this section some of the countermeasures already
proposed in the literature against architecture-based or
micro-architectural attacks are presented. These counter-
measures are presented together, because in many cases
they are shared.

Isolation between worlds is a source of different secu-
rity threats. Several mechanisms have emerged that aim to
overcome the existing limitations in the main TEE. Exam-
ples of such limitations are the absence or weakness in au-
thentication when accessing TEE resources from the NW
and shared memory which as we have argued is potentially
insecure for data exchange within the channel. A tech-
nique commonly used to reduce the attack surface is known
as multi-isolated environments. They are different from
traditional sandboxes and are particularly useful for pro-
tecting TEE systems from a wide variety of attacks. They
make it possible to contain the scope of damage that can
be caused by a security breach by increasing the granular-
ity of isolation between different TEE components. They
also allow limiting the code that can be executed, which
directly reduces the possibility of privilege escalation at-
tacks. This technique has been implemented in different
ways. Some focus on the creation of compartments of the
NW itself, with a strong isolation, in which applications
would be assigned. Others focus on protecting the appli-
cations, with approaches such as as Sanctuary (Brasser
et al., 2019) and TrustICE (Sun et al., 2015b) leveraging
different features of TZASC. There are mechanisms that
explore the implementation of environment isolation with
hardware virtualization extensions available in NW (NS-
EL2) such as PrivateZone (Jang et al., 2016), OSP (Cho
et al., 2016), and vTZ (Hua et al., 2017).

As seen in this paper, some architectural attacks oc-
cur because TAs in Trustonic TEE cannot physically
read/write to physical memory – this task is performed
by specific driver TAs. If an application needs to make
use of shared memory, it will have to issue a request to the
controller. Samsung’s TZ, known as TIMA, uses a sim-
ilar approach, where only the application controller can
allocate physical memory – thus mitigating risk. TIMA

24

makes use of a whitelist that limits the applications that
can query the application controller. Although this mech-
anism provides additional security guarantees, it is still
not sufficient: the attacker could target the whitelisted
applications to successfully compromise the system.

Some implementations aim to mitigate this poten-
tial source of vulnerabilities using an architectural de-
sign based on microkernel, which restricts the execution of
drivers to the SW user space only. This approach is being
integrated into NVIDIA and Trustonic implementations.
Other companies, such as Huawei, focus on introducing a
new task to control the TEE lifecycle. To do this, it creates
a TEE with certain privileges, which it calls GlobalTask.
Another measure is the inclusion of a single non-secure
port to perform the centralized connection of all memory-
mapped non-sensitive IP cores. This allows their operation
to be controlled by memory protection mechanisms such
as SMMU (Marchand et al., 2017). Other measures focus
on preventing the misuse of hardware voltage regulators,
which is solved by applying specific hardware and software
performance limiters via drivers (Tang et al., 2017).

SeCReT (Jang et al., 2015) provides a session key for
applications running in the NW to encrypt messages. In
more detail, SeCReT proposes a number of input and out-
put mode changes to the kernel, including the elimination
of the memory key during kernel mode execution, pursu-
ing the protection of the NW kernel session key – which is
untrusted. In the case of TFence (Jang and Kang, 2018),
a non-fully privileged process (a shielded part of the NW
application process) communicates directly with the TEE,
further eradicating this kernel dependency. There are al-
ternatives that implement exclusive shared memory such
as TTEEv, Sanctuary and PrivateZone. The latter al-
lows communication, but without memory sharing, since
it implements it by means of data copies. There are other
alternatives that avoid BOOMERAN attacks by sanitizing
the Machiry et al. pointers. In fact, Machiry et al. were
in contact throughout the process with the TEE suppliers
themselves, with the ultimate goal of being able to develop
the relevant corrections for their environments.

COLONY (Xia et al., 2021) proposes a new architec-
ture in which each instance of the design (“COLONY”)
has grants to access only the necessary system-level se-
mantics. This approach relies on a secure monitor to im-
plement isolation and capability management. Despite the
advantages provided by this approach, which assumes that
hardware components are completely reliable, the protec-
tion provided is not sufficient – as demonstrated in sec-
tion 6. In fact, a compromised “COLONY” can attack
the caller by returning a malicious value (Checkoway and
Shacham, 2013). Furthermore, COLONY does not take
into account side-channel attacks, hardware-based attacks
and DoS attacks.

Other solutions use particular techniques such as Key-
stone (Lee et al., 2020), which aims at isolating memory
with a programmable layer below untrusted components.
Keystone provides protection to the TEE against some at-

tacks (Mapping, Syscall Tampering and Side-channel), as
well as protection to the host OS against TEE attacks. It
also provides protection to the secure monitor, since the
entire memory of the secure monitor is isolated and there-
fore not reachable for all TEEs. In fact, it is not even
accesible for OS hosts. EnclaveDom (Melara et al., 2019),
implemented in Intel SGX, is a system that provides a
separation of privileges for larger TEE applications. The
enclave is divided by memory regions which are labeled,
and establishes a set of access rules per region with some
granularity of the individual functions in the enclave.

Sanctuary (Brasser et al., 2019) proposes an extension
of TZ with the use of user-space enclaves. This approach is
designed to provide hardware-enforced bidirectional isola-
tion, without the need to trust or veto the code of authors
called Sanctuary Applications (SAs), since a malicious SA
should not be more privileged than normal user space ap-
plications. Through bus identity filtering and some ad-
ditional architectural changes, Sanctuary achieves parallel
isolation of individual CPU cores. This allows sensitive
code to run without affecting the user experience and with
fairly negligible latency in benchmarks.

Many of the existing weaknesses in memory protection
of TEEs can be addressed by mechanisms in major operat-
ing systems. Still, note that some commercial TEEs pro-
vide stronger security mechanisms, either by implement-
ing measures against specific attacks such as cold boot at-
tacks, or by integrating tools to provide additional protec-
tion such as memory encryption (e.g. Intel SGX provides
memory encryption, yet TrustZone does not provide inte-
grated support for it on the chip itself). Other solutions,
such as CaSE (Zhang et al., 2016b), allow applications to
run from the cache, thus ensuring that their state remains
properly encrypted when writing back to main memory.
Also, Ginseng (Yun and Zhong, 2019) performs variable
protection by tagging the application programmer as “sen-
sitive”. Therefore, its information is encrypted at runtime
while stored at the CPU registers, thus no unencrypted
data will be stored in memory.

Regarding the integrity of the TEE, commercial TEEs
have attempted to address this weakness by making use of
a secure boot confidence to preserve TEE image integrity.
Nevertheless, we highlight that only with this mechanism
it is not possible for an application client to verify the iden-
tity and integrity of both the application binaries and the
TEE. For this reason, some of the commercial implementa-
tions of TEEs provide certain extra trust primitives. The
use of techniques such as remote attestation and sealed
storage can be useful in providing such assurances. Thus,
TLR (Santos et al., 2011) includes a sealed storage mech-
anism to protect data from each other by linking them
to specific hash values in the TEE-App software stack.
Komodo (Ferraiuolo et al., 2017) describes the implemen-
tations of the sealed key storage and remote attestation
security protocols, as it appeared in the original SGX en-
clave specification.

Other strategies include pre-venting the cache side

25

channels performed by implementing cryptographic algo-
rithms in software (Guanciale et al., 2016; Lipp et al., 2016;
Zhang et al., 2016b; Ryan, 2019a) or in specific hardware
(e.g., as is the case with specific instructions in ARM such
as AESD and AESE) (Lipp et al., 2016) to prevent in-
formation leaks in operations. Besides, implementing a
reduction of the attack surface by seeking the reduction of
the Trusted Computing Base (TCB) (Ying et al., 2019).
Truz et al. present as a novelty a proposal based on the
use of what they call the delegation model. This model
is based on the reuse of almost the entire OS user inter-
face stack in the NW. In this way, they manage to protect
the user interface only as a two-dimensional surface, and
manage to reduce the size of the TCB considerably.

8.3. Memory Protection Mechanisms

8.3.1. Lack of Address Space Layout Randomisation

Whether due to the lack of Address space layout ran-
domisation (ALSR) implementations, or the poor imple-
mentation of existing ones, the fact is that this is an ar-
chitectural flaw shared by the vast majority of existing
TEEs.

Implementations such as OP-TEE (Brand), NVIDIA
and Huawei do not provide any ALSR mechanism. In
Qualcomm’s case, an ASLR is provided for all applications,
but only makes use of a small physical memory area where
the application code is loaded, so that in a small space
(about 100MB) all applications are sequentially hosted.
It is desirable to achieve high entropy to avoid failures,
although in the case of Qualcomm TEE its ALSR is 9
bits, a number that is not enough to provide high entropy.

Despite ASLR, the attacker can be able to figure out
where to read and where to write, so other mechanisms
are needed. In section 7.1.6, the insertion of noise while
taking measurements of the cache during the attack is de-
scribed. Other strategies, such as (Lipp et al., 2020), focus
on disabling the path predictor if an attempt to exploit
the path predictor occurs, and compare the labels of all
routes again. Still, so far there is no documented evidence
that AMD processors support such advanced strategies in
hardware, or even that there is any OS interface for this
purpose.

8.3.2. Other memory protection mechanisms

Current OSs integrate memory protection mechanisms
such as Guard pages (GP), Stack Cookies (SC) or Execu-
tion protection (XP). GPs are used to define the bound-
aries of the mutable data segments for each process. In
other words, it defines the stack, heap and global data
in order to avoid a potential attacker from trying to per-
form an attack based on an overflow of one segment with
the aim of corrupting another and resulting in a failure.
SC are unique values used for stack smashing detection
to allow aborting a running program. Finally, XP delim-
its certain memory areas in which programs cannot ex-
ecute. However, this type of mechanism has repeatedly

proven to be insufficient. In fact, not all OS integrate
these mechanisms. In the case of Trustonic TEE, it has
no SC, and it allocates memory to both the global and the
stack from the application data segment without putting
GP between them. Qualcomm implements SC with ran-
dom pointer size, yet GP protection mechanisms are not
integrated. The ARM implementation of XP makes use of
a bit (WXN) of the SCTLR register. This is used to mark
write-capable memory regions as “Execute Never” (XN).
Other approaches make use of the GP XN attribute (in
those implementations that have it) in order to allocate
unpriviledge (UXN) and priviledge (PXN) XN, such as
NVIDIA (Corporation, 2015) and Linaro (Brand) imple-
mentations that provide both kernel space and user space.

8.3.3. Speculative Attacks Protection

We consider the case of Spectre (Koruyeh et al., 2020)
to be of particular relevance. Firstly, because of the im-
pact it has had. Secondly because, unlike the attacks that
have been carried out based on side channels, Spectre high-
lights the relevance of covert channels, which have often
been forgotten. There are two countermeassures to pre-
vent exploitation of Spectre-PHT: memory fences after
branches (Canella et al., 2019b), or constraining the in-
dex to a valid range using a bitmask (Zhang et al., 2022;
Canella et al., 2019b).

The countermeasure KAISER (Lipp et al., 2020), de-
veloped initially to prevent side-channel attacks target-
ing KASLR, inadvertently protects against Meltdown.
KAISER prevents Meltdown to a large extent, thus it is
highly recommended to deploy KAISER. Intel (Canella
et al., 2019a) has proposed certain hardware countermea-
sures it built into its latest processors Coffee Lake Refresh
i9 CPUs to prevent Meltdown . While they certainly make
it difficult to implement these attacks they open the door
for other attacks such as Fallout.

Still, there are certain countermeasures that manage
to mitigate the impact of the attack to a certain extent.
These are focused on partitioning, as proposed Lych et
al. in 1992 (Lynch et al., 1992), Liedtke et al. (Liedtke
et al., 1997) in 1997 and Shi et al. (Shi et al., 2011) 2011.
Others are based on flushing, as Osvik et al. (Osvik et al.,
2006) and Guanciale et al (Guanciale et al., 2016) proposed
in 2016 and 2013 respectively. However, we should be
aware that state partitioning in the kernel will only be
possible with additional hardware support as Maña and
Muñoz described in 2006 (Maña and Muñoz, 2006) and
Dominster et al. in 2012 (Domnitser et al., 2012).

Hyperrace (Chen et al., 2019b) is an alternative de-
signed to detect speculative execution attacks. The au-
thors of this paper propose a mitigation scheme that re-
quires the support of an untrusted operating system. In
fact, this alternative design is certainly capable of verifying
the behaviour of the operating system.

26

9. Open Challenges

This section outlines some research challenges and open
questions that have to be resolved in order to reach an
overall improvement of the security of TEE architectures
and specific implementations.

One major challenge in the development of secure
TEE-based solutions is the protection of shared re-
sources between the normal and the secure world. Al-
though some mechanisms have been devised to protect
shared resources (e.g., the NS bit), these are not efficient
against some attacks. A particularly serious threat is the
exploitation of side channels, which could be applied to
transfer data between worlds, or to leak sensitive TA data.
Therefore, it is paramount to investigate novel mechanisms
capable of diminishing this threat while allowing third-
party applications to make use of the security mechanisms
included and offered by TEE. In fact, side-channel attacks,
especially speculative attacks, are currently a hot topic of
research due to the drastic consequences of recent attacks.

The use of dedicated hardware is also important for
solving some of the limitations or complementing the func-
tionalities of TEEs. Dedicated hardware can be used to
improve the levels of entropy achieved by current imple-
mentations (e.g., QSEE has a 9-bit ASLR with low en-
tropy) but it can also help to preserve the integrity and
confidentiality of sensitive data, such as cryptographic keys
from side-channel attacks. However, the integration of
TPM-type secure elements has some limitations. Not only
the addition of new hardware implies increased cost but
also applications need to be prepared to use it correctly.
A possible alternative to secure hardware in the protection
of side-channels is to restrict the number of applications
that are allowed to access to the secure world simultane-
ously but this would limit the performance of the system.
Therefore, an important challenge to solve is to find a tech-
nology with the security of TPM but with the functionality
and cost of TEE.

In the absence of any message protection mechanism
in TZ, any attacker with privileges to make direct use of
the kernel could issue any custom SMC and fuzz the form.
This would allow him to successfully implement a man-in-
the-middle (MitM) attack with the aim of discovering flaws
in the TEE and then exploiting them. In addition, other
sorts of attacks, for example denial-of-service attacks, can
also be successfully implemented. In fact, at least in none
of the existing TEE implementations, there is no message
validation mechanism. In fact, even the Universal Unique
Identifier (UUID) is susceptible to replication and could
be overridden as a security measure. This implies that
the TEE has no choice but to act without certainty, mak-
ing use of information from the unverified message. For
all these reasons, we consider that it is essential to elab-
orate more in-depth studies on the possible integration of
validation mechanisms.

The lack of sufficient validation mechanisms in ex-
iting TEE implementations is another open problem that

needs to be tackled. On the one hand, no TEE solution
implements message validation in terms of authentication
and integrity. This implies that the TEE has no choice
but to act without certainty with information from unver-
ified messages. This would allow, for example, to success-
fully implement a denial of service attack or a man-in-the-
middle attack. It could be argued that the UUID of the
message could be used to verify the legitimacy of function
calls but since the UUID is part of the SMC it is suscep-
tible to replication and/or impersonation. On the other
hand, there is an insufficient validation of the parameters
passed to functions. In fact, this is one of the main causes
of several of the software-based attacks presented in pre-
vious sections. To prevent them, it is necessary to devise
more robust sanitation mechanisms to the parameters re-
ceived by functions before they are used.

A typical problem of many security systems that also
affects most TEE implementations is that they are ob-
scured systems. Most existing implementation designs
are closed and the result is architectures that are not an-
alyzed by security experts prior to their widespread adop-
tion. This security-by-obscurity approach has proven to
be wrong on many occasions. Although this trend may
be changing with the recent release of the specification of
the Qualcomm TEE secure boot procedure, as well as the
TA authentication, we are still far from open designs and
architectures.

As the IoT matures and the number of interconnected
devices continue to grow it is vitally important to pro-
tect these devices, which may be part of critical systems.
We envision that some of the IoT devices in these sys-
tems will incorporate some kind of TEE technology for
improved security at a cost not as high as that imposed
by other hardware solutions. Indeed, some manufactures
already provide solutions that can be fitted into some IoT
devices such as Infineon’s OPTIGA Trust X (Infineon),
Microchip Technology’s ATECC608A (Inc), Maxim Inte-
grated’s MAXQ106 (Integrated), Trusted Objects’ TO136
(Objects), NXP Semiconductors’ proposals SE050 (Semi-
conductors, 2021) and A71CH (Semiconductors, 2018).
Therefore, the research community should investigate how
to take advantage of these solutions to establish trust re-
lationships between devices, how these are affected by the
integration of different TEE implementations, and so on.

In general, there is an urgent need for security frame-
works that allow security experts to assess TEE imple-
mentations and the code running in them. In fact, the
code to be executed inside the TEE is prone to contain
vulnerabilities, which can be used to compose attack vec-
tors to corrupt the TEE, compromising the entire system.
Security frameworks should help to analyze and verify the
security of the code, the appropriateness of the protection
mechanisms among trusted environments, in addition to
providing methods for monitoring and detecting compro-
mised TEEs and mechanisms for recovering from attacks.

Recall that any application has access to all the re-
sources that a trusted application has. Therefore, an at-

27

tacker could modify the legitimate OS kernel of a device by
exploiting the memory mapping and writing capabilities of
the SW and, as a result, the kernel would be infected even
if there is no vulnerability in the NW kernel itself. For
example, neither QSEE or TrustonIC provide a security
mechanism that enables the separation of different mem-
ory segments and controls possible heap overflows between
different segments.

10. Conclusion

TEE development have been a very prolific field of re-
search and innovation in the last few years. Undoubtedly,
this technology provides an improved level of protection
during the execution of third-party applications. How-
ever, evidence has shown that it has many shortcomings
in terms of security.

Throughout this paper, we have presented and ana-
lyzed a vast myriad of attacks that can be launched against
TEE. These include software-based attacks, side-channel
attacks and (micro-)architectural attacks. Although some
of these attacks are theoretical, many of them can be real-
ized and have been exploited in practice. What is worse,
countermeasures have only been developed for some of
them.

In general, we can state that despite the widespread
adoption of these technologies, especially in the mobile
sector, this is still an immature technology yet with much
potential. Much of their problems are due to the fact that
their architecture is software-based, resulting in faulty im-
plementations and poor protection against hardware-based
attacks. Combining this technology with dedicated secure
hardware to complement its security features may be the
way forward.

TrustZone, and the various implementations of TEEs
that utilize it, are seen as the optimal security providing
mechanism in mobile devices, and it is used to provide a
vast array of integrity and confidentiality functionalities
to the platform. Nevertheless, cryptographic primitives
capable of providing the appropriate root of trust to the
persistent sealing and attestation mechanisms are not in-
cluded.

Acknowledgements

This work has been partially supported by the Span-
ish Ministry of Science and Innovation through the Se-
cureEDGE project (PID2019-110565RB-I00), and by the
by the Andalusian FEDER 2014-2020 Program through
the SAVE project (PY18-3724).

References

Ahmad, Z., Francis, L., Ahmed, T., Lobodzinski, C., Audsin, D.,
Jiang, P., 2013. Enhancing the security of mobile applications by
using tee and (u) sim, in: 2013 IEEE 10th International Confer-
ence on Ubiquitous Intelligence and Computing and 2013 IEEE

10th International Conference on Autonomic and Trusted Com-
puting, IEEE. pp. 575–582.

Alam, S., Riley, R., Sogukpinar, I., Carkaci, N., 2016. Droidclone:
Detecting android malware variants by exposing code clones,
in: 2016 Sixth International Conference on Digital Information
and Communication Technology and its Applications (DICTAP),
IEEE. pp. 79–84.

Alam, S., Sogukpinar, I., 2020. Droidclone: Attack of the android
malware clones-a step towards stopping them. Computer Science
and Information Systems , 35–35.

AMD, 2021. Secure encrypted virtualization (sev). Accessed on
08.11.2022.

Andriatsimandefitra, R., Tong, V.V.T., 2015. Detection and identifi-
cation of android malware based on information flow monitoring,
in: 2015 IEEE 2nd international conference on cyber security and
cloud computing, IEEE. pp. 200–203.

Arfaoui, G., Gharout, S., Traoré, J., 2014. Trusted execution en-
vironments: A look under the hood, in: 2014 2nd IEEE Inter-
national Conference on Mobile Cloud Computing, Services, and
Engineering, IEEE. pp. 259–266.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe,
C., Lind, J., Muthukumaran, D., O’keeffe, D., Stillwell, M.L.,
et al., 2016. SCONE: Secure linux containers with intel SGX,
in: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 689–703.

Asokan, N., Ekberg, J.E., Kostiainen, K., Rajan, A., Rozas, C.,
Sadeghi, A.R., Schulz, S., Wachsmann, C., 2014. Mobile trusted
computing. Proceedings of the IEEE 102, 1189–1206.

Azab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh,
G., Ma, J., Shen, W., 2014. Hypervision across worlds: Real-
time kernel protection from the arm trustzone secure world, in:
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 90–102.

Azab, A.M., Ning, P., Zhang, X., 2011. Sice: a hardware-level
strongly isolated computing environment for x86 multi-core plat-
forms, in: Proceedings of the 18th ACM conference on Computer
and communications security, pp. 375–388.

Azab, A.M., Swidowski, K., Bhutkar, R., Ma, J., Shen, W., Wang,
R., Ning, P., 2016. Skee: A lightweight secure kernel-level execu-
tion environment for arm., in: NDSS, pp. 21–24.

Basse, F., 2016. Amlogic s905 sytem on chip: bypassing the (not so)
secure boot to dump the bootrom. Accessed on 27.07.2021.

Baumann, A., Peinado, M., Hunt, G., 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Com-
puter Systems (TOCS) 33, 1–26.

Beaupre, S., 2015. Trustnone.
Beniamini, G., a. Exploring qualcomms secure execution environ-

ment.
Beniamini, G., b. Qsee privilege escalation vulnerability and

exploit (cve-2015-6639), may 2016. URL https://bits-
please.blogspot.com/2016/05/qsee-privilege-escalation-
vulnerability. html 64.

Beniamini, G., c. Trustzone kernel privilege escalation (cve-2016-
2431), 2016 5.

Beniamini, G., 2015a. Android linux kernel privilege escalation vul-
nerability and exploit (cve-2014-4322).

Beniamini, G., 2015b. Full trustzone exploit for msm8974. URL
http://bits-please. blogspot. co. il/2015/08/full-trustzone-exploit-
for-msm8974. html .

Beniamini, G., 2016a. Extracting qualcomms keymaster keysbreak-
ing android full disk encryption.

Beniamini, G., 2016b. War of the worlds-hijacking the linux kernel
from qsee .

Beniamini, G., 2017. Trust issues: Exploiting trustzone tees. Ac-
cessed on 27.07.2021.

Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M., 2010. Dif-
ferential cache-collision timing attacks on aes with applications to
embedded cpus, in: Cryptographers Track at the RSA Conference,
Springer. pp. 235–251.

Boivie, R., Williams, P., 2012. Secureblue++: Cpu support
for secure execution. IBM, IBM Research Division, RC25287

28

(WAT1205-070) , 1–9.
Bonneau, J., Mironov, I., 2006. Cache-collision timing attacks

against aes, in: International Workshop on Cryptographic Hard-
ware and Embedded Systems, Springer. pp. 201–215.

Brand, P., . Op-tee. Accessed on 08.11.2022.
Brasser, F., Gens, D., Jauernig, P., Sadeghi, A.R., Stapf, E.,

2019. Sanctuary: Arming trustzone with user-space enclaves.,
in: NDSS.

Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S.,
Sadeghi, A.R., 2017. Software grand exposure:SGX cache attacks
are practical, in: 11th USENIX Workshop on Offensive Technolo-
gies (WOOT 17).

Busch, M., Westphal, J., Mueller, T., 2020. Unearthing the trusted-
core: A critical review on huaweis trusted execution environment,
in: 14th USENIX Workshop on Offensive Technologies (WOOT
20).

Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin,
M., Moghimi, D., Piessens, F., Schwarz, M., Sunar, B., et al.,
2019a. Fallout: Leaking data on meltdown-resistant cpus, in: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 769–784.

Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., Von Berg, B.,
Ortner, P., Piessens, F., Evtyushkin, D., Gruss, D., 2019b. A
systematic evaluation of transient execution attacks and defenses,
in: 28th USENIX Security Symposium (USENIX Security 19),
pp. 249–266.

Cerdeira, D., Santos, N., Fonseca, P., Pinto, S., 2020. Sok: Un-
derstanding the prevailing security vulnerabilities in trustzone-
assisted tee systems, in: 2020 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 1416–1432.

Chakraborty, D., Hanzlik, L., Bugiel, S., 2019. simtpm: User-centric
TPM for mobile devices, in: 28th USENIX Security Symposium
(USENIX Security 19), pp. 533–550.

Chang, R., Jiang, L., Chen, W., Xiang, Y., Cheng, Y., Alelaiwi, A.,
2017. Mipe: a practical memory integrity protection method in
a trusted execution environment. Cluster Computing 20, 1075–
1087.

Checkoway, S., Shacham, H., 2013. Iago attacks: Why the system call
api is a bad untrusted rpc interface. ACM SIGARCH Computer
Architecture News 41, 253–264.

Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H., 2019a.
Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution, in: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), IEEE. pp. 142–157.

Chen, G., Li, M., Zhang, F., Zhang, Y., 2019b. Defeating
speculative-execution attacks on sgx with hyperrace, in: 2019
IEEE Conference on Dependable and Secure Computing (DSC),
IEEE. pp. 1–8.

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Wald-
spurger, C.A., Boneh, D., Dwoskin, J., Ports, D.R., 2008. Over-
shadow: a virtualization-based approach to retrofitting protection
in commodity operating systems. ACM SIGOPS Operating Sys-
tems Review 42, 2–13.

Chen, Y., Zhang, Y., Wang, Z., Wei, T., 2017. Downgrade attack on
trustzone. arXiv preprint arXiv:1707.05082 .

Cho, H., Zhang, P., Kim, D., Park, J., Lee, C.H., Zhao, Z., Doupé,
A., Ahn, G.J., 2018. Prime+ count: Novel cross-world covert
channels on arm trustzone, in: Proceedings of the 34th Annual
Computer Security Applications Conference, pp. 441–452.

Cho, Y., Shin, J., Kwon, D., Ham, M., Kim, Y., Paek, Y., 2016.
Hardware-assisted on-demand hypervisor activation for efficient
security critical code execution on mobile devices, in: 2016
USENIX Annual Technical Conference (USENIX ATC 16), pp.
565–578.

Cooijmans, T., de Ruiter, J., Poll, E., 2014. Analysis of secure key
storage solutions on android, in: Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile De-
vices, pp. 11–20.

Corporation, N., 2015. Tlk repository. Accessed on 27.07.2021.
Costan, V., Lebedev, I., Devadas, S., 2016. Sanctum: Minimal hard-

ware extensions for strong software isolation, in: 25th USENIX

Security Symposium (USENIX Security 16), pp. 857–874.
Criswell, J., Dautenhahn, N., Adve, V., 2014. Virtual ghost: Protect-

ing applications from hostile operating systems. ACM SIGARCH
Computer Architecture News 42, 81–96.

Cui, A., Housley, R., 2017. BADFET: Defeating modern secure boot
using second-order pulsed electromagnetic fault injection, in: 11th
USENIX Workshop on Offensive Technologies (WOOT 17).

Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V.,
2015. Nested kernel: An operating system architecture for intra-
kernel privilege separation, in: Proceedings of the Twentieth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 191–206.

Dietrich, K., Winter, J., 2009. Implementation aspects of mobile
and embedded trusted computing, in: International Conference
on Trusted Computing, Springer. pp. 29–44.

Diffie, W., Hellman, M., 1976. New directions in cryptography. IEEE
transactions on Information Theory 22, 644–654.

Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev,
D., 2012. Non-monopolizable caches: Low-complexity mitigation
of cache side channel attacks. ACM Transactions on Architecture
and Code Optimization (TACO) 8, 1–21.

Drozdovskyi, T.A., Moliavko, O.S., 2019. mtower: Trusted execu-
tion environment for mcu-based devices. Journal of Open Source
Software 4, 1494.

Ekberg, J.E., Afanasyeva, A., Asokan, N., 2012. Authenticated
encryption primitives for size-constrained trusted computing, in:
International Conference on Trust and Trustworthy Computing,
Springer. pp. 1–18.

Ekberg, J.E., et al., 2007. Mobile trusted module (mtm)–an intro-
duction .

Elenkov, N., 2013. Credential storage enhancements in android
4.3. URL-nelenkov. blogspot. co. uk/2013/08/credential-storage-
enhancements-android-43. html .

Evenchick, E., 2018. Rustzone: Writing trusted applications in rust.
Felton, D., . Trustonic, trusted executed environment(tee). Accessed

on 08.11.2022.
Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B., 2017. Ko-

modo: Using verification to disentangle secure-enclave hardware
from software, in: Proceedings of the 26th Symposium on Oper-
ating Systems Principles, pp. 287–305.

Feske, N., 2015. Genode operating system framework.
Fitzek, A., Achleitner, F., Winter, J., Hein, D., 2015. The andix

research os arm trustzone meets industrial control systems secu-
rity, in: 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), pp. 88–93.

Ge, X., Vijayakumar, H., Jaeger, T., 2014. Sprobes: Enforcing ker-
nel code integrity on the trustzone architecture. arXiv preprint
arXiv:1410.7747 .

GlobalPlatform, . Globalplatform specifications. Accessed on
27.09.2022.

González, J., Bonnet, P., 2013. Towards an open framework leverag-
ing a trusted execution environment, in: International Symposium
on Cyberspace Safety and Security, Springer. pp. 458–467.

Google, . Google. (n.d.). trusty tee. Accessed on 08.11.2022.
Götzfried, J., Eckert, M., Schinzel, S., Müller, T., 2017. Cache at-

tacks on intel sgx, in: Proceedings of the 10th European Workshop
on Systems Security, Association for Computing Machinery, New
York, NY, USA.

Götzfried, J., Eckert, M., Schinzel, S., Müller, T., 2017. Cache at-
tacks on intel sgx, in: Proceedings of the 10th European Workshop
on Systems Security, pp. 1–6.

Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C., 2017. Aslr
on the line: Practical cache attacks on the mmu., in: NDSS, p. 26.

Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S., 2016a.
Prefetch side-channel attacks: Bypassing smap and kernel aslr, in:
Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 368–379.

Gruss, D., Maurice, C., Wagner, K., Mangard, S., 2016b. Flush+
flush: a fast and stealthy cache attack, in: International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer. pp. 279–299.

29

Gruss, D., Spreitzer, R., Mangard, S., 2015. Cache template at-
tacks: Automating attacks on inclusive last-level caches, in: 24th
USENIX Security Symposium (USENIX Security 15), pp. 897–
912.

Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M., Jaeger, T.,
2017. Trustshadow: Secure execution of unmodified applications
with arm trustzone, in: Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services,
pp. 488–501.

Guanciale, R., Nemati, H., Baumann, C., Dam, M., 2016. Cache
storage channels: Alias-driven attacks and verified countermea-
sures, in: 2016 IEEE Symposium on Security and Privacy (SP),
IEEE. pp. 38–55.

Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E., 2013.
Inktag: Secure applications on an untrusted operating system, in:
Proceedings of the eighteenth international conference on Archi-
tectural support for programming languages and operating sys-
tems, pp. 265–278.

Holding, A., 2009. Arm security technology: Building a secure sys-
tem using trustzone technology.

Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M., 2017. Hindroid: An
intelligent android malware detection system based on structured
heterogeneous information network, in: Proceedings of the 23rd
ACM SIGKDD International conference on knowledge discovery
and data mining, pp. 1507–1515.

Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H., 2017. vtz:
Virtualizing ARM trustzone, in: 26th USENIX Security Sympo-
sium (USENIX Security 17), pp. 541–556.

Hussin, W.H.W., Coulton, P., Edwards, R., 2005. Mobile ticketing
system employing trustzone technology, in: International Confer-
ence on Mobile Business (ICMB’05), IEEE. pp. 651–654.

Hussin, W.H.W., Edwards, R., Coulton, P., 2006. E-pass using drm
in symbian v8 os and trustzone: Securing vital data on mobile
devices, in: 2006 International Conference on Mobile Business,
IEEE. pp. 14–14.

Inc, M.T., . Atecc608a, secure element to secure authentication.
Accessed on 27.10.2022.

Infineon, T., . Optigatmtrust x sls 32aia. Accessed on 08.11.2022.
Integrated, M., . Maxq1061, deep cover cryptographic controller for

embedded devices. Accessed on 27.07.2021.
Intel, 2014. Intel software guard extensions programming reference.

Accessed on 08.11.2022.
Irazoqui, G., Eisenbarth, T., Sunar, B., 2015. S$a: A shared cache

attack that works across cores and defies vm sandboxing–and its
application to aes, in: 2015 IEEE Symposium on Security and
Privacy, IEEE. pp. 591–604.

Irazoqui, G., Eisenbarth, T., Sunar, B., 2016. Cross processor cache
attacks, in: Proceedings of the 11th ACM on Asia conference on
computer and communications security, pp. 353–364.

Jang, J., Choi, C., Lee, J., Kwak, N., Lee, S., Choi, Y., Kang, B.B.,
2016. Privatezone: Providing a private execution environment us-
ing arm trustzone. IEEE Transactions on Dependable and Secure
Computing 15, 797–810.

Jang, J., Kang, B.B., 2018. Retrofitting the partially privileged mode
for tee communication channel protection. IEEE Transactions on
Dependable and Secure Computing 17, 1000–1014.

Jang, J.S., Kong, S., Kim, M., Kim, D., Kang, B.B., 2015. Secret:
Secure channel between rich execution environment and trusted
execution environment., in: NDSS.

Janjua, H., Ammar, M., Crispo, B., Hughes, D., 2019. Towards a
standards-compliant pure-software trusted execution environment
for resource-constrained embedded devices, in: Proceedings of the
4th Workshop on System Software for Trusted Execution, pp. 1–6.

Jarabek, C., Barrera, D., Aycock, J., 2012. Thinav: Truly
lightweight mobile cloud-based anti-malware, in: Proceedings of
the 28th Annual Computer Security Applications Conference, pp.
209–218.

Ji, D., Zhang, Q., Zhao, S., Shi, Z., Guan, Y., 2019. Microtee:
designing tee os based on the microkernel architecture, in: 2019
18th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/13th IEEE Interna-

tional Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), IEEE. pp. 26–33.

Keltner, N., Holmes, C., 2014. Here be dragons: Vulnerabilities in
trustzone.

Kim, Y., Lee, J., Mai, T.X., Paek, Y., 2012. Improving performance
of nested loops on reconfigurable array processors. ACM Trans-
actions on Architecture and Code Optimization (TACO) 8, 1–23.

Kim, Y., Liszka, K.J., Chan, C.C., 2016. Using droiddream android
malware behavior for identification of other android malware fam-
ilies, in: Proceedings of the International Conference on Security
and Management (SAM), The Steering Committee of The World
Congress in Computer Science, Computer . p. 286.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., et al., 2019.
Spectre attacks: Exploiting speculative execution, in: 2019 IEEE
Symposium on Security and Privacy (SP), IEEE. pp. 1–19.

Komaromy, D., 2018. Unbox your phone part i. Accessed on
08.11.2022.

Koruyeh, E.M., Shirazi, S.H.A., Khasawneh, K.N., Song, C., Abu-
Ghazaleh, N., 2020. Speccfi: Mitigating spectre attacks using cfi
informed speculation, in: 2020 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 39–53.

Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A., 2009. On-
board credentials with open provisioning, in: Proceedings of the
4th International Symposium on Information, Computer, and
Communications Security, pp. 104–115.

Kwon, D., Seo, J., Cho, Y., Lee, B., Paek, Y., 2019. Pros: Light-
weight privatized se cure oses in arm trustzone. IEEE Transactions
on Mobile Computing 19, 1434–1447.

Kwon, Y., Dunn, A.M., Lee, M.Z., Hofmann, O.S., Xu, Y., Witchel,
E., 2016. Sego: Pervasive trusted metadata for efficiently verified
untrusted system services. ACM SIGARCH Computer Architec-
ture News 44, 277–290.

Lammens, L., . Code aurora forum security bulletin. Accessed on
27.10.2022.

Lapid, B., Wool, A., 2018. Navigating the samsung trustzone and
cache-attacks on the keymaster trustlet, in: European Symposium
on Research in Computer Security, Springer. pp. 175–196.

Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D., 2020.
Keystone: An open framework for architecting trusted execution
environments, in: Proceedings of the Fifteenth European Confer-
ence on Computer Systems, pp. 1–16.

Lee, U., Park, C., 2020. Softee: Software-based trusted execution
environment for user applications. IEEE Access 8, 121874–121888.

Li, W., Xia, Y., Lu, L., Chen, H., Zang, B., 2019. Teev: virtu-
alizing trusted execution environments on mobile platforms, in:
Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pp. 2–16.

Liedtke, J., Hartig, H., Hohmuth, M., 1997. Os-controlled cache
predictability for real-time systems, in: Proceedings Third IEEE
Real-Time Technology and Applications Symposium, IEEE. pp.
213–224.

Lipp, M., 2016. Cache attacks and rowhammer on arm .
Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S., 2016.

Armageddon: Cache attacks on mobile devices, in: 25th USENIX
Security Symposium (USENIX Security 16), pp. 549–564.

Lipp, M., Hažić, V., Schwarz, M., Perais, A., Maurice, C., Gruss,
D., 2020. Take a way: Exploring the security implications of
amd’s cache way predictors, in: Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, pp.
813–825.

Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella,
C., Gruss, D., 2021. Platypus: Software-based power side-channel
attacks on x86, in: IEEE Symposium on Security and Privacy
(SP).

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A.,
Horn, J., Mangard, S., Kocher, P., Genkin, D., et al., 2018. Melt-
down: Reading kernel memory from user space, in: 27th USENIX
Security Symposium (USENIX Security 18), pp. 973–990.

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B., 2015. Last-level
cache side-channel attacks are practical, in: 2015 IEEE sympo-

30

sium on security and privacy, IEEE. pp. 605–622.
Liu, H., Saroiu, S., Wolman, A., Raj, H., 2012. Software abstrac-

tions for trusted sensors, in: Proceedings of the 10th international
conference on Mobile systems, applications, and services, pp. 365–
378.

Lynch, W.L., Bray, B.K., Flynn, M.J., 1992. The effect of page
allocation on caches. ACM SIGMICRO Newsletter 23, 222–225.

Machiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N.,
Wang, R., Bianchi, A., Choe, Y.R., Kruegel, C., Vigna, G., 2017.
Boomerang: Exploiting the semantic gap in trusted execution en-
vironments., in: NDSS.

Maistri, P., Leveugle, R., Bossuet, L., Aubert, A., Fischer, V., Robis-
son, B., Moro, N., Maurine, P., Dutertre, J.M., Lisart, M., 2014.
Electromagnetic analysis and fault injection onto secure circuits,
in: 2014 22nd International Conference on Very Large Scale Inte-
gration (VLSI-SoC), IEEE. pp. 1–6.

Maña, A., Muñoz, A., 2006. Protected computing vs. trusted com-
puting, in: 2006 1st International Conference on Communication
Systems Software & Middleware, IEEE. pp. 1–7.

Marchand, C., Aubert, A., Bossuet, L., et al., 2017. On the secu-
rity evaluation of the arm trustzone extension in a heterogeneous
soc, in: 2017 30th IEEE International System-on-Chip Conference
(SOCC), IEEE. pp. 108–113.

McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig,
A., 2010. Trustvisor: Efficient tcb reduction and attestation, in:
2010 IEEE Symposium on Security and Privacy, IEEE. pp. 143–
158.

McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.,
2008. Flicker: An execution infrastructure for tcb minimization,
in: Proceedings of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008, pp. 315–328.

McGill, K.N., 2013. Trusted mobile devices: Requirements for a mo-
bile trusted platform module. Johns hopkins apl technical digest
32, 544–554.

McGillion, B., Dettenborn, T., Nyman, T., Asokan, N., 2015. Open-
tee–an open virtual trusted execution environment, in: 2015 IEEE
Trustcom/BigDataSE/ISPA, IEEE. pp. 400–407.

Melara, M.S., Freedman, M.J., Bowman, M., 2019. Enclavedom:
Privilege separation for large-tcb applications in trusted execution
environments. arXiv preprint arXiv:1907.13245 .

Meng, H., Thing, V.L., Cheng, Y., Dai, Z., Zhang, L., 2018. A survey
of android exploits in the wild. Computers & Security 76, 71–91.

Minkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J.,
Genkin, D., Gruss, D., Piessens, F., Sunar, B., Yarom, Y., 2019.
Fallout: Reading kernel writes from user space. arXiv preprint
arXiv:1905.12701 .

Moghimi, A., Irazoqui, G., Eisenbarth, T., 2017. Cachezoom:
How sgx amplifies the power of cache attacks, in: International
Conference on Cryptographic Hardware and Embedded Systems,
Springer. pp. 69–90.

Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D.,
Piessens, F., 2020a. Plundervolt: Software-based fault injection
attacks against intel sgx, in: 2020 IEEE Symposium on Security
and Privacy (SP), IEEE. pp. 1466–1482.

Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Piessens, F.,
Gruss, D., 2020b. Plundervolt: How a little bit of undervolting
can create a lot of trouble. IEEE Security & Privacy 18, 28–37.

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S., 2016.
Trustzone explained: Architectural features and use cases, in:
2016 IEEE 2nd International Conference on Collaboration and
Internet Computing (CIC), IEEE. pp. 445–451.

Objects, T., . To136 secure element. Accessed on 27.07.2021.
Oh, S.C., Koh, K., Kim, C.Y., Kim, K., Kim, S., 2012. Acceleration

of dual os virtualization in embedded systems, in: 2012 7th Inter-
national Conference on Computing and Convergence Technology
(ICCCT), IEEE. pp. 1098–1101.

Oliveira, D., Gomes, T., Pinto, S., 2021. utango: an open-source tee
for the internet of things. arXiv preprint arXiv:2102.03625 .

Osvik, D.A., Shamir, A., Tromer, E., 2006. Cache attacks and coun-
termeasures: the case of aes, in: Cryptographers track at the RSA
conference, Springer. pp. 1–20.

Pinto, S., Garlati, C., 2020. Multi zone security for arm cortex-m
devices, in: Proc. Embedded World Conf.

Pinto, S., Gomes, T., Pereira, J., Cabral, J., Tavares, A., 2017. Iio-
teed: An enhanced, trusted execution environment for industrial
iot edge devices. IEEE Internet Computing 21, 40–47.

Pinto, S., Santos, N., 2019. Demystifying arm trustzone: A compre-
hensive survey. ACM Computing Surveys (CSUR) 51, 1–36.

Pirker, M., Slamanig, D., 2012. A framework for privacy-preserving
mobile payment on security enhanced arm trustzone platforms,
in: 2012 IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications, IEEE. pp. 1155–
1160.

Pirker, M., Slamanig, D., Winter, J., 2012. Practical privacy pre-
serving cloud resource-payment for constrained clients, in: Inter-
national Symposium on Privacy Enhancing Technologies Sympo-
sium, Springer. pp. 201–220.

Qiu, P., Wang, D., Lyu, Y., Qu, G., 2019a. Voltjockey: Breaching
trustzone by software-controlled voltage manipulation over multi-
core frequencies, in: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 195–209.

Qiu, P., Wang, D., Lyu, Y., Qu, G., 2019b. Voltjockey: Breaking sgx
by software-controlled voltage-induced hardware faults, in: 2019
Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), IEEE. pp. 1–6.

Qiu, P., Wang, D., Lyu, Y., Tian, R., Wang, C., Qu, G., 2020.
Voltjockey: A new dynamic voltage scaling-based fault injection
attack on intel sgx. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 40, 1130–1143.

Qualcomm, 2018. Qualcomm product security - security advisories.
Qui, P., Wang, D., Lyu, Y., Qu, G., 2020. Voltjockey: Abusing

the processor voltage to break arm trustzone. GetMobile: Mobile
Computing and Communications 24, 30–33.

Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C., 2021.
Crosstalk: Speculative data leaks across cores are real, in: IEEE
Symposium on Security and Privacy, Institute of Electrical and
Electronics Engineers Inc.

Rosenberg, D., 2013. Unlocking the motorola bootloader. Azimuth
Security Blog .

Rosenberg, D., 2014. Reflections on trusting trustzone. BlackHat
USA .

Roth, T., 2013. Next generation mobile rootkits. Hack in Paris .
Ryan, K., 2019a. Hardware-backed heist: Extracting ecdsa keys from

qualcomm’s trustzone, in: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 181–
194.

Ryan, K., 2019b. Return of the hidden number problem. IACR
Transactions on Cryptographic Hardware and Embedded Systems
, 146–168.

Sabt, M., Achemlal, M., Bouabdallah, A., 2015. Trusted execution
environment: what it is, and what it is not, in: 2015 IEEE Trust-
com BigDataSE ISPA, IEEE. pp. 57–64.

Santos, N., Raj, H., Saroiu, S., Wolman, A., 2011. Trusted language
runtime (tlr) enabling trusted applications on smartphones, in:
Proceedings of the 12th workshop on mobile computing systems
and applications, pp. 21–26.

Santos, N., Raj, H., Saroiu, S., Wolman, A., 2014. Using arm trust-
zone to build a trusted language runtime for mobile applications,
in: Proceedings of the 19th international conference on Architec-
tural support for programming languages and operating systems,
pp. 67–80.

Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina,
J., Prescher, T., Gruss, D., 2019. Zombieload: Cross-privilege-
boundary data sampling, in: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
pp. 753–768.

Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S., 2017.
Malware guard extension: Using sgx to conceal cache attacks, in:
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer. pp. 3–24.

Semiconductors, N., 2018. A71ch, plug & trust secure element. Ac-
cessed on 27.09.2022.

31

Semiconductors, N., 2021. Se050 plug & trust secure element. Ac-
cessed on 08.11.2022.

Shah, J.H., et al., 2012. Armithril: A secure os leveraging arm’s
trustzone technology. .

Shen, D., 2015. ”attacking your trusted core exploiting trustzone on
android”. Accessed on 08.11.2022.

Shi, J., Song, X., Chen, H., Zang, B., 2011. Limiting cache-based
side-channel in multi-tenant cloud using dynamic page coloring,
in: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (DSN-W), IEEE. pp. 194–199.

Shin, J., Kim, Y., Park, W., Park, C., 2012. Dfcloud: A tpm-based
secure data access control method of cloud storage in mobile de-
vices, in: 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, IEEE. pp. 551–556.

Shinde, S., Le Tien, D., Tople, S., Saxena, P., 2017. Panoply: Low-
tcb linux applications with sgx enclaves., in: NDSS.

SierraWare, . Sierratee for arm trustzone. Accessed on 08.11.2022.
Solacia, . Securitee. Accessed on 27.07.2021.
Soviany, S., Scheianu, A., Suciu, G., Vulpe, A., Fratu, O., Istrate,

C., 2018. Android malware detection and crypto-mining recog-
nition methodology with machine learning, in: 2018 IEEE 16th
International conference on embedded and ubiquitous computing
(EUC), IEEE. pp. 14–21.

Spreitzer, R., Gérard, B., 2014. Towards more practical time-driven
cache attacks, in: IFIP International Workshop on Information
Security Theory and Practice, Springer. pp. 24–39.

Spreitzer, R., Plos, T., 2013. On the applicability of time-driven
cache attacks on mobile devices (extended version) .

Sun, H., Sun, K., Wang, Y., Jing, J., 2015a. Trustotp: Transform-
ing smartphones into secure one-time password tokens, in: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 976–988.

Sun, H., Sun, K., Wang, Y., Jing, J., Wang, H., 2015b. Trustice:
Hardware-assisted isolated computing environments on mobile de-
vices, in: 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, IEEE. pp. 367–378.

Takahashi, A., Tibouchi, M., Abe, M., 2018. New bleichenbacher
records: Practical fault attacks on qdsa signatures. IACR Cryptol.
ePrint Arch. 2018, 396.

Takei, C., Takada, H., Yamamoto, M., Honda, S., 2009. Integrated
software platform for automotive systems, in: 2009 International
SoC Design Conference (ISOCC), IEEE. pp. 377–379.

Tamrakar, S., Ekberg, J.E., Asokan, N., 2011. Identity verification
schemes for public transport ticketing with nfc phones, in: Pro-
ceedings of the sixth ACM workshop on Scalable trusted comput-
ing, pp. 37–48.

Tang, A., Sethumadhavan, S., Stolfo, S., 2017. CLKSCREW: expos-
ing the perils of security-oblivious energy management, in: 26th
USENIX Security Symposium (USENIX Security 17), pp. 1057–
1074.

TCG, 2013. Tpm 2.0 mobile trusted module use cases. Accessed on
08.11.2022.

Tögl, R., Winter, J., Pirker, M., 2013. A path towards ubiquitous
protection of media, in: Proceedings Workshop on Web Applica-
tions and Secure Hardware, ser. CEUR Workshop Proceedings,
Citeseer. pp. 32–38.

TrustKernel, . T6. Accessed on 27.07.2021.
Trustonic, 2017. Not just droning on! the rise of kinibi-m.
Tsai, C.C., Porter, D.E., Vij, M., 2017. Graphene-sgx: A practical

library OS for unmodified applications on SGX, in: 2017 USENIX
Annual Technical Conference (USENIATC 17), pp. 645–658.

Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Wenisch, T.F., Yarom, Y., Strackx,
R., 2018. Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution, in: 27th USENIX Se-
curity Symposium (USENIX Security 18), pp. 991–1008.

Van Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M.,
Genkin, D., Yarom, Y., Sunar, B., Gruss, D., Piessens, F., 2020.
Lvi: Hijacking transient execution through microarchitectural
load value injection, in: 2020 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 54–72.

Van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze,
G., Razavi, K., Bos, H., Giuffrida, C., 2019. Ridl: Rogue in-flight
data load, in: 2019 IEEE Symposium on Security and Privacy
(SP), IEEE. pp. 88–105.

Wagner, D., 1999. The boomerang attack, in: International Work-
shop on Fast Software Encryption, Springer. pp. 156–170.

Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratanto-
nio, Y., Van Der Veen, V., Platzer, C., 2014. Andrubis: Android
malware under the magnifying glass. Vienna University of Tech-
nology, Tech. Rep. TR-ISECLAB-0414-001 , 1–10.

Weiß, M., Heinz, B., Stumpf, F., 2012. A cache timing attack on
aes in virtualization environments, in: International Conference
on Financial Cryptography and Data Security, Springer. pp. 314–
328.

Weiß, M., Weggenmann, B., August, M., Sigl, G., 2014. On cache
timing attacks considering multi-core aspects in virtualized em-
bedded systems, in: International Conference on Trusted Systems,
Springer. pp. 151–167.

Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Strackx, R., Wenisch, T.F., Yarom,
Y., 2018. Foreshadow-ng: Breaking the virtual memory abstrac-
tion with transient out-of-order execution .

Xia, Y., Hua, Z., Yu, Y., Gu, J., Chen, H., Zang, B., Guan, H.,
2021. Colony: A privileged trusted execution environment with
extensibility. IEEE Transactions on Computers .

Yarom, Y., Falkner, K., 2014. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack, in: 23rd USENIX Security
Symposium (USENIX Security 14), pp. 719–732.

Ying, K., Thavai, P., Du, W., 2019. Truz-view: Developing trustzone
user interface for mobile os using delegation integration model, in:
Proceedings of the Ninth ACM Conference on Data and Applica-
tion Security and Privacy, pp. 1–12.

Yun, M.H., Zhong, L., 2019. Ginseng: Keeping secrets in registers
when you distrust the operating system., in: NDSS.

Zhang, N., Sun, K., Lou, W., Hou, Y.T., 2016a. Case: Cache-assisted
secure execution on arm processors, in: 2016 IEEE Symposium on
Security and Privacy (SP), IEEE. pp. 72–90.

Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T., 2016b. Truspy:
Cache side-channel information leakage from the secure world on
arm devices. IACR Cryptol. ePrint Arch. 2016, 980.

Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T., 2012. Cross-vm
side channels and their use to extract private keys, in: Proceedings
of the 2012 ACM conference on Computer and communications
security, pp. 305–316.

Zhang, Z., Barthe, G., Chuengsatiansup, C., Schwabe, P., Yarom, Y.,
2022. Breaking and fixing speculative load hardening. Cryptology
ePrint Archive .

32

Biographical Sketch

Antonio Muñoz is an assistant professor at the University of Malaga, where he obtained his Ph.D.
and M.Sc. degrees in computer engineering and computer science, respectively, in 2010 and 2005.
He holds his PhD an MSc degree in Computer Science and a Postgraduate Master degree in Software
Engineer and Artificial Intelligence, both of them from the University of Malaga. His principal
research interests are in the area of Agent technology, Digital Content Protection, Cryptographic
Hardware based Systems, Security Patterns and Security Engineering.

Ruben Rios is assistant professor at the University of Malaga, Spain. He
received the Ph.D. degree in Computer Science in 2014. His main research
activities are centred on the design and development of solutions for the
protection of digital privacy and anonymity in scenarios with resource-constrained devices. Dr. Rios was
awarded the FPU fellowship from the Spanish Ministry of Education and received the prize to the most
outstanding Ph.D. thesis in the University of Malaga. He is also one of the authors of the book “Location
Privacy in Wireless Sensor Networks” from CR Press.

 Rodrigo Roman is an assistant professor at the University of Malaga, where he obtained his Ph.D. and
M.Sc. degrees in computer engineering and computer science, respectively, in 2008 and 2003. Previously,
he worked for the Institute of Infocomm Research (I2R) in Singapore in the areas of sensor network
security and cloud security. Working to make security simple and usable, his research is fo- cused on the
development of protection mechanisms for the Internet of Things and related paradigms, such as cloud
computing and fog computing.

Javier Lopez is a full professor and head of the Net- work, Information and
Computer Security (NICS) Lab at the University of Malaga, Malaga, 29071, Spain. His research activities
are mainly focused on network security, security protocols, and critical information infrastructures,
leading a number of national and international research projects in those areas. He is Senior Member of
IEEE.

Biographical Sketch

Credit Author Statement

Antonio Muñoz: Conceptualization, Methodology Writing - original draft

Ruben Ros: Conceptualization, Methodology, Writing - review & editing

Rodrigo Román: Methodology, Writing - review & editing

Javier López: Supervision

34

Declaration of Competing Interest

The authors declare that they have no known competing financial inter-

ests or personal relationships that could have appeared to influence the work

reported in this paper.

35

