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Abstract. Contract signing is a fundamental service in doing business.
The Internet has facilitated the electronic commerce, and it is necessary
to find appropriate mechanisms for contract signing in the digital world.
From a designing point of view, digital contract signing is a particular
form of electronic fair exchange. Protocols for generic exchange of digital
signatures exist. There are also specific protocols for two-party contract
signing. Nevertheless, in some applications, a contract may need to be
signed by multiple parties. Less research has been done on multi-party
contract signing. In this paper, we analyze an optimistic N -party con-
tract signing protocol, and point out its security problem, thus demon-
strating further work needs to be done on the design and analysis of
secure and optimistic multi-party contract signing protocols.

Keywords: secure electronic commerce, multi-party contract signing, security
protocol analysis.

1 Introduction

The Internet has facilitated the electronic commerce. Many business transactions
have been shifted to the Internet. The motivation for such a trend is the efficiency
and cost-saving. However, as new risks may arise in the digital world, sufficient
security measures should be taken. This will help users to establish the confidence
for doing business on the Internet.

Contract signing is a fundamental service for business transactions, and has
been well practiced in the traditional paper-based business model. Now, it is nec-
essary to find appropriate mechanisms for contract signing in the digital world.
Consider several parties on a computer network who wish to exchange some
digital items but do not trust each other to behave honestly. Fair exchange is
a problem of exchanging data in a way that guarantees either all participants
obtain what they want, or none does. From a designing point of view, contract
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signing is a particular form of fair exchange, in which the parties exchange com-
mitments to a contract (typically, a text string spelling out the terms of a deal).
That is, a contract is a non-repudiable agreement on a given text such that after
a contract signing protocol instance, either each signer can prove the agreement
to any verifier or none of them can. If several signers are involved, then it is a
multi-party contract signing (MPCS) protocol.

There are some two-party contract signing protocols in the literature. Nev-
ertheless, less research has been done on multi-party contract signing. In this
paper, we analyze an optimistic multi-party contract signing protocol, and point
out its security problem, thus demonstrating further work needs to be done on
the design and analysis of secure and optimistic multi-party contract signing
protocols.

The rest of this paper is organized as follows. In Section 2, we review the
previous work related to contract signing, outline the properties to be satisfied
when designing an optimistic contract signing protocol and give explicit defini-
tions for some terms used along the descriptions of these protocols. In Section 3,
we analyze an optimistic N -party contract signing protocol presented in [11] and
demonstrate that the protocol cannot achieve fairness. We conclude the paper
in Section 4.

2 Related Work

As contract signing is a particular case of fair exchange, any fair exchange pro-
tocol found in the literature in which digital signatures are exchanged can be
considered as the related work. In all practical schemes, contract signing involves
an additional player, called Trusted Third Party (TTP). This party is (at least
to some extent) trusted to behave correctly, thus playing the role of a notary in
paper-based contract signing and somehow sharing the legal duties the former
ones have. In fact, designing and implementing a contract signing protocol using
an on-line TTP should not be a complicated task. In this case, if Alice and Bob
wish to enter into a contract, they each sign a copy of the contract and send it to
the TTP through a secure channel. The TTP will forward the signed contracts
only when it has received valid signatures from both Alice and Bob.

Nevertheless, in our continuous search for speeding up our daily life activities,
it is desirable not using a TTP in a contract signing protocol. Additionally,
if the TTP is not involved, the notary fee could be avoided. Some protocols
appear in the literature trying to eliminate the TTP’s involvement using gradual
exchange of signatures [9, 10]. But these solutions are not deterministic, thus
may not be accepted by signatories. Our objective is to focus on contract signing
protocols that necessarily use a TTP only in those cases in which an exception
occurs (i.e., a network communication failure or a dishonest party’s misbehavior).
Otherwise (all-honest-case), the TTP will not be contacted, and parties will bring
the protocol to its end by themselves. In the literature, these protocols are called
optimistic contract signing protocols [2–4, 14–17].



Some properties extracted from the different previous work on optimistic
contract signing are summarized as follows.

– Effectiveness - if each party behaves correctly, the TTP will not be involved
in the protocol.

– Fairness - no party will be in an advantageous situation at the end of the
protocol.

– Timeliness - any party can decide when to finish a protocol run without
loosing fairness.

– Non-repudiation - no party can deny its action.
– Verifiability of TTP - if the TTP misbehaves, all harmed parties will be able

to prove it.
– Transparency of TTP - if the TTP is contacted to resolve the protocol, the

resulting contract will be similar to the one obtained in case the TTP is not
involved.

– Abuse-Freeness - it is not possible for an attacker (either a legitimate par-
ticipant or an outsider) to show a third party that the contract final state is
under its control.

In [8], Ben-Or et al. presented an optimistic contract signing protocol based
on a probabilistic approach. Such a contract signing protocol is said to be (ν, ε)-
fair if for any contract C, when signer A follows the protocol properly, if the
probability that signer B is privileged to validate the contract with the TTP’s
help is greater than ν, the conditional probability that “A is not privileged”,
given that “B is privileged”, is at most ε.

Previous work in which several signatories are involved in a contract can
be found in [1, 6, 11, 12]. Only Asokan et al. addressed the MPCS problem in
synchronous networks [1]. As Asokan states, this solution clearly improves the
efficiency of those asynchronous protocols previously presented with respect to
the number of messages; 4(n − 1) messages in the all-honest-case and 6n − 4
messages in the worst case. This is possible due to a better reliability of the
underlaying network as we can see in Definition 1 below.

Some authors considered the abuse-freeness property in [13, 7]. Baum-Waidner
proposed new protocols in [6] that improve the solutions presented for asynchro-
nous networks in [7] such that the number of rounds is significantly reduced in
the case that the number of dishonest participants t is considerably less than
the total number of participants n - the smaller t is, the better results the new
protocols achieve.

Definition 1 A “synchronous” contract signing protocol is used in synchronous
networks in which there is a limited time for a message to reach its destination
(otherwise it has been lost and the appropriate transport layer manages these
events) even if an attack occurs. Thus a party can determine that a message has
not been sent by other party if it did not arrive within the limited time. Users’
clocks are assumed to be synchronized.



Definition 2 An “asynchronous” contract signing protocol is used in asynchro-
nous networks in which there is no limited time for a message to reach its destina-
tion. Loss and unsorted arrival of messages are possible and have to be managed
by the contract signing protocol itself. Clocks are not assumed to be synchronized
among users.

A number of protocols exist in the literature which use an asynchronous
model of network (i.e., messages can be reordered and lost) with deadline para-
meters. But when a deadline is introduced, and thus, synchronized clocks among
users are assumed (at least at the moment the deadline is approaching), these
protocols are converted into synchronous protocols.

In the literature, MPCS protocols make use of either a ring or a matrix
topology. Throughout these solutions, authors use the terms round and step
without clearly defining them, which often brings on confusion with respect to
the metric to be used for its efficiency evaluation. For this reason we explicitly
define these terms as follows:

– Round is understood as the existing time slot in which messages are distrib-
uted in synchronous networks. In asynchronous networks, the entities need
to wait a local time before going to the next round (in case the round is not
completed).

– Step refers to the action of sending or receiving a message. It is the operation
performed by a participating entity. Each round means one step (when all
the messages from all entities are distributed or broadcasted in the same
time slot, usually in matrix topologies) or several steps (when messages from
the same round are distributed from one entity to another, usually in ring
topologies).

It has to be noted that there is some confusion in the literature with respect
to the term ‘round’. Some authors explain that when the next message to be
sent depends on the previous one, that is a different round. But we claim two
different cases can be found (1) message to be sent depends on the previous one
because the entity needs to compute/verify it before sending the next one or (2)
message to be sent depends on the previous one because there is a distribution
order to be respected (as in ring topologies). We consider a round occurs in Case
(1).

All of previous solutions to the asynchronous multi-party contract signing
problem reach the lower bound on the number of rounds described in Theorem
3 given in [13]:

Any complete and optimistic asynchronous contract-signing protocol with
n participants requires at least n rounds in an optimistic run.

Describing the theorem, Garay et al. stated that for each party Pi, when it
sends a message that can be used (together with other information) by other
entities to obtain a valid contract, as the protocol is fair, it must have received
in a previous round, a message from the rest of participants in order to be able to



get a valid contract too (probably with the TTP’s help), no matter how others
behave. By an inductive argument, they showed the number of rounds is at least
n. This stands for t = n − 1 and the lower bound decreases with t number of
dishonest parties.

Ferrer’s asynchronous protocol presented in [11] with only three rounds is an
exception. It claimed some years ago to use a number of rounds independent from
the number of participants. As this is supposed a huge improvement with respect
to efficiency, we analyze the protocol and demonstrate in the next section, it is
flawed.

3 Analysis of a MPCS Protocol

To the best of our knowledge, only the asynchronous protocol in [11] can finish
multi-party contract signing in 3 rounds. Here we demonstrate that this protocol
does not fulfill the property of fairness.

It is not clear whether the informal argument given in the theorem above
apply to this protocol, since at the end of the first round (that is, after the first
n+1 steps needed for all entities to distribute all messages in a ring topology),
every party has received at least the initial commitment from every other party 3.
So we give another argument for the theorem above to make clearer that this
protocol is not compliant with the theorem, and demonstrate with an attack,
the validity of our argument.

We base our argument on the number of rounds a TTP needs to determine
whether a party is misbehaving when requesting resolution (i.e., it requests the
TTP to cancel but continues the main protocol): The TTP cannot determine
whether a party is misbehaving until round = roundcurrent + 1, since the TTP
needs to wait until the next round to see whether this entity cheated and contin-
ued the protocol. That means if n− 1 dishonest parties exist in the worst case,
and each of them requests the cancel sub-protocol in a different round, n rounds
are the minimum required to satisfy fairness in an asynchronous optimistic con-
tract signing protocol.

3.1 Protocol Description

The original notation used in the protocol description is as follows:

- M : message containing the contract to be signed. The contract specifies
the order of players in a ring for exchanging signature of principal i on the
contract M .

- hi = Si(H(M)) : signature of principal i on contract M , where H(.) is a
collusion-resistant one-way hash function.

- ACKi = Si(H(h-ACK)) : signature of principal i on h-ACK, all the signa-
tures and acknowledgments given by other parties in the ring.

3 Note that only one step would have been needed if a matrix topology is used and
all distribute their commitments at the same time.



- ACK2B = SB(H(ACKC)) : last acknowledgment sent to the last player in
the protocol.

- cancel, cancelA, cancelC , finish: variables used by the TTP to maintain the
state of a protocol run.

Suppose A, B, and C are 3 parties going to sign a contract. A is the first
principal in the ring architecture, C is the last one, and all the rest (P2 · · ·Pn−1

for n parties) behave as B. This has been previously agreed upon a setup phase
by all entities. The exchange sub-protocol is as follows:

1. A → B : M,hA

2. B → C : M,hA, hB

3. C → A : hB , hC

4. A → B : hC , ACKA

5. B → C : ACKA, ACKB

6. C → A : ACKB , ACKC

7. A → B : ACKC

8. B → C : ACK2B

If the protocol run is completed, everybody will hold non-repudiation (NR)
evidence. In order to demonstrate to an external party the existence of a contract
signed by all parties, following NR evidence has to be provided:

– A holds hB , hC , ACKB , ACKC

– B holds hA, hC , ACKA, ACKC

– C holds hA, hB , ACKA, ACKB , ACK2B

If there is an exception in the main exchange protocol, then the parties get
involved in either cancel or finish sub-protocols with the TTP. First of all, the
TTP’s intervention is to verify the correctness of the information given by par-
ties. If this information is incorrect, the TTP will send an error message to that
party. Some state variables (cancel, finish, cancelA and cancelC) are used, all
of which with a value false at the beginning for a particular exchange. ACKTTP

is the TTP’s signature on H(M); this is equivalent to an acknowledgement from
a party that should have sent.

If A says that she has not received the first message sent by C, A may initiate
the following cancel sub-protocol:

1. A → TTP : h(M), hA

2. TTP → A : IF finish = true THEN ACKTTP

ELSE STTP (H(cancelled, hA));
TTP stores cancel = true

If the variable finish is true, it means B or/and C had previously finished
the protocol with the TTP (see paragraphs below). The TTP had given the NR
token ACKTTP to B or/and C, and now it has to give the same NR token to A.
If B and C had not contacted the TTP previously, the TTP will send a message
to A to cancel the transaction, and it will store this information (cancel = true)
in order to satisfy future requests from B or C.



If A says that she has not received the last message from C, A may initiate
the following finish sub-protocol:

1. A → TTP : h(M), hA, hB , hC

2. TTP → A : IF cancel = true THEN STTP (H(cancelled, hA));
TTP stores cancelA = true

ELSE ACKTTP ;
TTP stores finish = true

If the variable cancel is true, it means B had previously contacted the TTP
(see paragraphs below). The TTP had given a message to B to cancel the trans-
action, and now it has to send a similar message to A. Additionally, the TTP
will store the variable cancelA with value true to satisfy potential petitions from
C. If B had not contacted the TTP previously, the TTP will send the NR token
ACKTTP to A. In this case the TTP will assign the value true to the variable
finish, in order to satisfy future petitions from B or/and C.

If B says that he has not received the second message from A, B may initiate
the following cancel sub-protocol:

1. B → TTP : h(M), hA, hB

2. TTP → B : IF finish = true THEN ACKTTP

ELSE STTP (H(cancelled, hB));
TTP stores cancel = true

If the variable finish is true, it means A or/and C had previously finished
the protocol with the TTP. The TTP had given the NR token ACKTTP to A
or/and C, and now it has to give the same NR token to B. If A and C had not
contacted the TTP previously, the TTP will send a message to B to cancel the
transaction, and it will store this information (cancel = true) in order to satisfy
future petitions from A or C.

If B says that he has not received the last message from A, B may initiate
the following finish sub-protocol:

1. B → TTP : h(M), hA, hB , hC , ACKA

2. TTP → B : IF cancelC = true THEN STTP (H(cancelled, hB))
ELSE ACKTTP ;

TTP stores finish = true

If the variable cancelC is true, it means A and C (in this order) had previously
contacted the TTP (see paragraphs above). The TTP had given a message to A
and C to cancel the transaction, and now it has to send a similar message to B.
If A had not cancelled the exchange, the TTP will send the NR token ACKTTP

to B. In this case the TTP will assign the value true to the variable finish, in
order to satisfy future petitions from A or/and C.

If C says that he has not received the second message from B, C may initiate
the following finish sub-protocol:



1. C → TTP : h(M), hA, hB , hC

2. TTP → C : IF cancel = true THEN STTP (H(cancelled, hC));
TTP stores cancelC = true

ELSE ACKTTP ;
TTP stores finish = true

If the variable cancel is true, it means A or/and B had previously contacted
the TTP (see paragraphs above). The TTP had given a message to A or/and
B to cancel the transaction, and now it has to send a similar message to C.
Additionally, the TTP will store the variable cancelC with value true to satisfy
potential future petitions from B. If A and B had not cancelled the exchange
with the TTP previously, the TTP will send the NR token ACKTTP to C. In
this case the TTP will assign the value true to the variable finish, in order to
satisfy future petitions from A or/and B.

If C has not received the last message from B, C may initiate the following
second finish sub-protocol:

1. C → TTP : h(M), hA, hB , hC , ACKA, ACKB

2. TTP → C : IF cancelA = true THEN STTP (H(cancelled, hC))
ELSE ACKTTP ;

TTP stores finish = true

If the variable cancelA is true, it means B and A (in this order) had previously
contacted the TTP. The TTP had given a message to A and B to cancel the
transaction, and now it has to send a similar message to C. If A and B had
not cancelled the exchange with the TTP previously, the TTP will send the NR
token ACKTTP to C. In this case the TTP will assign the value true to the
variable finish, in order to satisfy future petitions from A or/and B.

3.2 Security Analysis

Once we have described the protocol, the first step of our analysis is to check
whether this protocol fulfills all the defined properties.

– It is an asynchronous protocol, i.e., messages can be lost or reach their des-
tination in an unsorted way.

– It is effective, since no TTP participation is needed if all parties behave
correctly.

– It is not fair, since some parties can be in an advantageous position at the
end of the protocol. Furthermore, this flaw cancels the rest of properties.
It does not fulfill timeliness, non-repudiation (parties could deny their ac-
tions), verifiability of TTP, transparency of TTP (the TTP signs affidavits),
and abuse-freeness (it allows an entity to decide the final outcome of the
protocol).

Using the TTP’s resolution protocol just described, let us have a look at
the following scenario. Suppose there are 4 participants (A,B1, B2, C), where



B1 and B2 behave as B in the resolution protocol as they are the intermediate
participants in the ring architecture.

1. A → B1 : M,hA

2. B1 → B2 : M,hA, hB1

3. B2 → C : M,hA, hB1 , hB2

4. C → A : hB1 , hB2 , hC

5. A → B1 : hB2 , hC , ACKA

: B1 resolves:: cancel = true; and continues the protocol
6. B1 → B2 : hC , ACKA, ACKB1

7. B2 → C : ACKA, ACKB1 , ACKB2

8. C → A : ACKB1 , ACKB2 , ACKC

: A resolves:: cancelA = true; and continues the protocol
9. A → B1 : ACKB2 , ACKC

10. B1 → B2 : ACKC

: B2 resolves:: finish = true; gets the contract
: and continues the protocol

11. B2 → C : ACK2B2

: C resolves:: cancelled

In this arbitrary protocol execution, all entities contact the TTP for resolving
the protocol even though they continue its execution, getting different results.
B1 invokes its cancel sub-protocol in step 5, A invokes its finish sub-protocol
in step 8, B2 invokes its finish sub-protocol in step 10, and after finishing the
protocol C invokes its second finish sub-protocol.

At the end of the protocol, and with the TTP’s help, B2 and C obtain
different results. This is due to lack of state variables to maintain the actual
status of the protocol. cancelA and cancelC are not enough for controlling the
status if n − 1 (n > 3) parties are dishonest when they cancel the protocol. In
other words, there is no sub-protocol when Bi says it has not received the last
message from Bj (i > j) ∈ [P2 · · ·Pn−1] and the wrong sub-protocol is used.

Furthermore, an inconsistency can be found in its explanation for 3 parties.
In the 3-party version, B and A cancel the protocol (in this order) but continue
with its execution. If the protocol stops before the last step, A and B have the
signed contract, but C can obtain only a cancel token instead. If priority to
the cancel token is assigned by the arbitrator, then the protocol is fair, since C
presents its cancel token to the arbitrator in case of dispute and the arbitrator
settles that the contract has been cancelled.

But if the last step occurs, then now, all get the signed contract but A and B
have cancel tokens. In this case priority to the finished state should be assigned,
as the honest party acting properly (C) got the contract. Nevertheless, the ar-
bitrator does not know who is the honest party, and cannot assign priority to
the tokens. This is a serious contradiction. And this happens with any sequence
(e.g., also if A and C cancel in this order while B is honest). As shown above,
parties cheat about their protocol state when contacting the TTP. Obviously,
the TTP can detect it, but can do nothing to repair the situation.



Moreover, in the original work there is no dispute resolution process defined
for the multi-party version, which makes it more difficult to explicitly resolve
possible conflicts. We claim that in any design of a contract signing protocol, a
well-defined dispute resolution process has to be provided.

4 Conclusions

Contract signing is a particular form of fair exchange, in which the parties ex-
change commitments to a contract. Previous work mainly focused on two-party
contract signing. In some applications, however, a contract may need to be signed
by multiple parties. In this paper, we analyzed an optimistic N -party contract
signing protocol, and pointed out its security problem. This clearly demonstrates
that if we want a bank deposit to be made with several beneficiaries, further re-
search is needed on the multi-party fair exchange protocols and more concretely
on multi-party contract-signing protocols. Part of this research contemplates
formal verification and analysis of existing solutions.

This finding encourages us to study and improve existing multi-party contract
signing solutions. Definitely further work is needed in synchronous networks, and
an improvement of efficiency in asynchronous networks needs to be achieved to
bring these applications into reality with the user’s confidence.
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