
Protecting Free Roaming Agents against
Result-Truncation Attack

Jianying Zhou
Institute for Infocomm Research

21 Heng Mui Keng Terrace
Singapore 119613

jyzhou@i2r.a-star.edu.sg

Jose A. Onieva and Javier Lopez
Computer Science Department

University of Malaga
29071 - Malaga, Spain

{onieva,jlm }@lcc.uma.es

Abstract— Mobile agents are especially useful in electronic
commerce, for both wired and wireless environments. Neverthe-
less, there are still many security issues on mobile agents to be
addressed, for example, data confidentiality, non-repudiability,
forward privacy, publicly verifiable forward integrity, insertion
defense, truncation defense, etc. One of the hardest security
problems for free roaming agents is truncation defense where
two visited hosts (or one revisited host) can collude to discard
the partial results collected between their respective visits. In
this paper, we present a new scheme satisfying those security
requirements, especially protecting free roaming agents against
result-truncation attack.

Keywords: secure electronic commerce, mobile agent,
cryptographic protocol.

I. I NTRODUCTION

Mobile agentsare software programs that live in computer
networks, performing their computations and moving from
host to host as necessary to fulfill their goals [2]. Mobile
agents are especially useful in electronic commerce, and have
attracted lot of research interest. Nevertheless, as stated in [3],
there are still many security issues on mobile agents to be
addressed. We could classify the security issues of mobile
agents as

- protection of the host from malicious code, and
- protection of the agent from a malicious host trying to

tamper the code and the agent data.

The community has initially placed more attention in the
first problem that is similar to the one existed with Java and
ActiveX technologies in which a host has to run software
coming from untrusted sources. The most popular solution is
sandbox, i.e., an agent cannot control the machine in which it
is executed.

With respect to the second problem, we can further classify
it into two sub-problems. In the first case, a malicious host tries
to tamper the agent’s code. To address this problem, computing
with encrypted functions such ashomomorphicencryption
schemes is under research [4]. In the second case, a malicious
host tries to tamper the data carried by the agent. This problem
is especially serious forfree roamingmobile agents that are
free to choose their respective next hops dynamically based on
the data they acquired from their past journeys. For instance,

in a scenario that a free-roaming agent is used to collect
offers for an air-ticket, a malicious host may try to “hijack”
or “brainwash” the previously collected data to favor its offer.
This paper will be focused on the solutions of protecting agent
data (or computation results).

The rest of this paper is organized as follows. In Section
2, we outline the security requirements that a free roaming
mobile agent should satisfy. In Section 3, we review the
previous work on protection of agent data, and point out their
weaknesses and limitations. After that, we propose a new
scheme in Section 4 that protects the agent data while a mobile
agent roams freely in computer networks. We give an informal
analysis of our scheme in Section 5, and conclude the paper
in Section 6.

II. SECURITY REQUIREMENTS

Suppose a mobile agent departing from hostS0 will obtain
a list of encapsulated offersO1, · · · , On from different hosts
S1, · · · , Sn that are selected dynamically when the agent roams
over the network. The security properties on the agent data
protection defined in [2] and extended in [1] are as follows.

• Data Confidentiality: Only the originatorS0 can extract
the encapsulated offersO1, · · · , On.

• Non-repudiability: Si cannot deny submittingOi onceS0

receivesOi.
• Forward Privacy: No one except the originatorS0 can

extract the identity information of the hostsS1, · · · , Sn

by examining the chain of encapsulated offers.
• Forward Integrity: None of the encapsulated offersOi

can be modified.
• Publicly Verifiable Forward Integrity: Anyone can check

the integrity of the chain of encapsulated offers.
• Insertion Defense: No new offer can be inserted in

O1, · · · , On without being detected.
• Truncation Defense: No existing offer can be removed

from O1, · · · , On without being detected.

One of the hardest security problems for free roaming
agents is truncation defense. In this paper, we present a new
scheme satisfying the above security requirements, especially

J. Zhou, J. A. Onieva, and J. Lopez, “Protecting Free Roaming Agents against Result-Truncation Attack”, 60th IEEE Vehicular Technology Conference
(VTC04), pp. 3271-3274, 2004.
NICS Lab. Publications: https://www.nics.uma.es/publications



protecting free roaming agents against result-truncation attack.

III. PREVIOUS WORK

Several schemes have been proposed to protect agent data.
Yee proposed to use aPartial Result Authentication Code
(PRAC) to ensure the integrity of the offers acquired from the
hosts [5]. In this scheme, an agent and its originator maintain
a list of secret keys, or a key generating function. The agent
uses a key to encapsulate the collected offer and then destroys
the key. However, a malicious host may keep the key or the
key generating function. When the agent revisits the host or
visits another host conspiring with it, a previous offer or series
of offers would be modified, without being detected by the
originator.

Karjoth et al. extended Yee’s results. In the KAG
scheme [2], each host generates a signing key for its successor
and certifies the corresponding verification key. Using the
received signature/verification key pair, a host signs its partial
result and certifies a new verification key for the next host.
Their scheme could resist the modification attack in Yee’s
scheme but not a two-colluder truncation attack. In this attack,
two visited hosts (or one revisited host) can collude to discard
the partial results collected between their respective visits.

Cheng and Wei further enhanced the KAG scheme to
defend the two-colluder truncation attack. In the Cheng-Wei
scheme [1], a host is first required to get a counter-signature
of its partial result from its predecessor before sending it to
the next host. In such a way, any two hosts cannot collude
to truncate the agent data collected in the period that the
agent visits these two colluding hosts. However, this scheme
still suffers from the truncation attack when a special loop is
established on the path of a free-roaming agent [6].

IV. OUR PROTOCOL

Here we intend to improve the Cheng-Wei scheme to get
rid of its weaknesses. Our new protocol will be effective in
defending any two-colluder truncation attack.

Consider a shopping scenario in which an agent departing
from hostS0 will obtain a list of offers from different hosts
S1, · · · , Sn selected dynamically when the agent roams over
the network. Among all the security requirements listed in
Section 2, we focus our attention on the truncation defense,
and in particular, defense against atwo-colluder truncation
attack. In this scenario, an attackerW captures an agent
with encapsulated offersO1, · · · , Oj−1, Oj , · · · , On and col-
ludes with hostSj trying to truncate all the offers after
Oj and insert the attacker’s offers to get the new chain
O1, · · · , Oj−1, O

′
j , · · · , OW .

A. Assumptions and Notation

A public key infrastructure is assumed in the mobile agent
environment. Each hostSi has a certified private/public key
pair (v̄i, vi). Given a signature expressed asSigv̄i(m), we
assume that anyone could deduce the identity ofSi from

it. The chain of encapsulated offersO1, O2, · · · , On is an
ordered sequence. Each entry of the chain depends on some of
the previous and/or succeeding members. A chaining relation
specifies the dependency.

An agent is defined asA = (I, C, S) whereI is the identity,
C is the code and S is the state of the agent. BothI and C
are assumed to be static whileS is variable.I is in the form
of (IDA, SeqA), whereIDA is a fixed identity bit string of
the agent andSeqA is a sequence number which is unique for
each agent execution. The originator signshA, wherehA =
H(I, C) is the agent integrity checksum andSigv̄0(hA) is
the certified agent integrity checksum. The agent carries this
certified checksum, allowing the public to verify the integrity
of I andC and deduce the identity ofS0.

Our protocol is similar to the Cheng-Wei scheme and uses
a co-signing mechanism in which a host needs the preceding
host’s signature on its encapsulated offer before sending it to
the next host. It also depends on the signatures on the agent
integrity checksum generated by the two associated preceding
hosts such that the current host is able to verify that the
preceding host did not insert two offers in a self-looping mode.

The model and cryptographic notation used in the protocol
description is summarized in Tables I and II, respectively.

S0 = Sn+1 The originator
Si, 1 ≤ i ≤ n A host
oi, 1 ≤ i ≤ n An offer from Si. The identity ofSi is

explicitly specified inoi

Oi, 1 ≤ i ≤ n An encapsulated offer (cryptographically
protectedoi) from Si

hi, 1 ≤ i ≤ n An integrity check value associated with
Oi and the next hop

O0, O1, .., On The chain of encapsulated offers

TABLE I

MODEL NOTATION

ri A random number generated bySi

(v̄i, vi) Private and public key pair ofSi

(µ̄i, µi) Temporary private and public key pair
of Si

Encvi(m) A messagem encrypted with the public
key vi of Si

Sigv̄i(m) A signature ofSi on messagem with its
private keyv̄i

V er(σ, v) A signature verification function for
signatureσ with public keyv

H(m) A one-way, collision-free hash function
[m] Messagem sent via a confidential channel
A → B : m A sends messagem to B

TABLE II

CRYPTOGRAPHICNOTATION

B. Protocol Specification

Our protocol consists of three parts: agent creation, agent
migration atS1, and agent migration atSi (2 ≤ i ≤ n).



Agent Creation

1. Offer encapsulation

S0 : h0 = H(r0, S1)
S0 : O0 = Sigv̄0(Encv0(r0), I, h0)
S0 : σ0 = Sigv̄0(h0)

The originatorS0 of an agent first generates a random
numberr0 and selects the next hostS1 that the agent will
visit. ThenS0 calculates an agent integrity checksumh0

and creates a signatureσ0. S0 also encapsulates a dummy
offer O0.

2. Agent transmission

S0 → S1 : O0, σ0

When the agent roams fromS0 to S1, the agent will
carry O0 andσ0.

Agent Migration at S1

3. Agent verification

S1 : receive O0, σ0

S1 : V er(O0, v0), and recover I, h0

S1 : V er(σ0, v0)

When the agent arrives, hostS1 will check the data
carried by the agent. It verifiesS0’s signatureO0 to
identify the sender of the agent. It also verifiesS0’s
signatureσ0 to identify the agent.

4. Interactive offer encapsulation

S1 : h1 = H(O0, r1, S2)
S1 → S0 : temp1 =

Encv0(Sigv̄1(o1, µ1, σ0), r1), h1, µ1

S0 → S1 : O1 = Sigv̄0(temp1)
S1 : V er(O1, v0)
S1 : σ1 = Sigv̄1(h1)

Host S1 generates a pair of its temporary private and
public keys(µ̄1, µ1) and a random numberr1. S1 also
selects the next hostS2 that the agent will visit. ThenS1

calculates an agent integrity checksumh1 and a partial
encapsulated offerEncv0(Sigv̄1(o1, µ1, σ0), r1).

S1 forms temp1 which also includes its temporary
public key µ1. temp1 is then sent toS0 for counter-
signing. (It is assumed thattemp1 is sent over an authen-
ticated channel.S0 will record the agent departed from
it and only signtemp1 once.) O1 not only represents
S1’s encapsulated offer, but also certifies thatµ1 is S1’s
temporary public key.

Upon receipt and verification ofO1 from S0, S1 finally
signsh1 to getσ1.

5. Agent transmission

S1 → S2 : O0, O1, σ0, [σ1]

When the agent roams fromS1 to S2, the agent will
carry O0, O1 and σ0, σ1. To provide forward privacy of
identities of hosts that the agent has visited (excluding

the originatorS0), σ1 is transmitted over a confidential
channel fromS1 to S2.

Agent Migration at Si (2 ≤ i ≤ n)

6. Agent verification

Si : receive O0, · · · , Oi−1, σi−2, σi−1

Si : V er(O0, v0), and recover I, h0

Si : V er(O1, v0), and recover h1, µ1

Si : V er(Ok, µk−1), and recover hk, µk

recusively for 2 ≤ k ≤ i− 1
Si : V er(σi−2, vi−2)
Si : V er(σi−1, vi−1)
Si : verify Si−2 6= Si−1

As in Step 3, when the agent migrates fromSi−1

to Si, Si will check the data carried by the agent. It
recoversµ1, · · · , µi−1 from O1, · · · , Oi−1, and verifies
these encapsulated offers with the corresponding tem-
porary public keys. It also verifies the certified agent
checksumsσi−2, σi−1 and more importantly, make sure
two hosts Si−2 and Si−1 are different. Otherwise, a
truncation attack colluding with such a host is possible.

7. Interactive offer encapsulation

Si : hi = H(Oi−1, ri, Si+1)
Si → Si−1 : tempi =

Encv0(Sigv̄i(oi, µi, σi−2, σi−1), ri),
hi, µi

Si−1 → Si : Oi = Sigµ̄i−1(tempi)
Si : V er(Oi, µi−1)
Si : σi = Sigv̄i(hi)

This step is similar to Step 4, but the format of
Si’s partial encapsulated offer is slightly different which
links to two preceding hostsSi−1 andSi−2. In addition,
the key used for counter-signingtempi by Si−1 is its
temporary keyµ̄i−1 instead of v̄i−1. In such a way,
all encapsulated offers can be verified publicly without
revealing the real identities of those counter-signers.

8. Agent transmission

Si → Si+1 : {Ok|0 ≤ k ≤ i}, [σi−1, σi]

This step is similar to Step 5. The agent will carry
all the encapsulated offersO0, · · · , Oi when it migrates
from Si to Si+1. In addition, bothσi−1 and σi need to
be transmitted over a confidential channel in migration in
order to protect the privacy of those identities.

V. SECURITY ANALYSIS

Here we give a brief analysis of our protocol with respect
to the security requirements outlined in Section 2.

Data Confidentiality Each offer oi (i = 1, · · · , n) that
is encapsulated inOi is encrypted with the originatorS0’s
public keyv0. Only S0 can decrypt it to extract the offer, thus
confidentiality is preserved.



Non-repudiability Each offer oi (i = 1, · · · , n) that is
encapsulated inOi is signed bySi with v̄i. Therefore,Si

cannot deny its offeroi once the agent carryingOi returns to
the originatorS0.

Forward Privacy Each offer oi (i = 1, · · · , n) that is
encapsulated inOi is first signed bySi but then encrypted
with S0’s public key v0. Therefore, the identity ofSi will
not be disclosed to others (exceptS0) by examiningOi. In
addition, as a random numberri is used in computing the
checksumhi, it reveals no identity information by examining
hi. However, asσi will be sent toSi+1 and Si+2 in order
to verify that two adjacent hosts are different on the agent
migration path, the identity ofSi will be disclosed toSi+1

andSi+2. This implies a slight weakening of forward privacy
in our protocol.

Forward Integrity Each offer oi (i = 1, · · · , n) that is
encapsulated inOi is signed bySi. Any change to the signed
offer will be detected. Furthermore, evenSi cannot change its
own encapsulated offerOi in the chainO1, · · · , Oi, · · · , On

without being detected. SupposeSi wants to replaceoi with o′i.
To make this change undetected,Si needs to get a new counter-
signatureO′

i = Sigµ̄i−1(temp′i) from Si−1 which should also
satisfyH(Oi, ri+1, Si+2) = H(O′i, ri+1, Si+2). Even if Si−1

is willing to collude on generation ofO′i, the equation will
not be satisfied under our assumption of collision-free hash
function.

Publicly Verifiable Forward Integrity Each encapsulated
offer Oi (i = 1, · · · , n) containsSi’s temporary public keyµi

that is certified bySi−1 with its temporary private keȳµi−1.
With Oi, anyone can obtainµi and use it to verifyOi+1.
Therefore, the integrity ofO1, · · · , On is publicly verifiable.

Insertion DefenseAs all encapsulated offersO1, · · · , On

are chained, if a new encapsulated offerOx is inserted between
Oi andOi+1 without being detected, some chaining relations
have to be changed inOi andOi+1. Suppose an attackerSx

tries to insertOx as follows.

hx = H(Oi, rx, Si+1)
tempx = Encv0(Sigv̄x(ox, µx, σi−1, σi), rx), hx, µx

Ox = Sigµ̄i(tempx)
σx = Sigv̄x(hx)

This implies thatSx at least needs to askSi to counter-sign
tempx, and askSi+1 to replace its signature intempi+1 as
Sigv̄i+1(oi+1, µi+1, σi, σx). So it is impossible forSx to insert
Ox without collusion withSi andSi+1.

Truncation DefenseThe chaining mechanism used in the
insertion defense also works for the truncation defense. Sup-
pose an attackerSx tries to truncate the encapsulated offers
O1, · · · , Oi, Oi+1, · · · from Oi+1 thereafter and may also add
Ox after Oi. Then,Sx needs to reviseOi as follows.

h′i = H(Oi−1, ri, Sx)
temp′i = Encv0(Sigv̄i(oi, µi, σi−2, σi−1), ri), h′i, µi

O′i = Sigµ̄i−1(temp′i)
σ′i = Sigv̄i(h

′
i)

Obviously,Sx is unable to make the above revisions without
collusion with Si and Si−1. In other words, our protocol
defends against truncation attacks if there are no more than
two colluders. A straightforward extension of our protocol is
possible to defend truncation attacks with more colluders.

Our protocol also resists truncation attacks even if a loop
like “ · · · , Si−2, Si−1, Si, Si+1, · · · where Si−2 = Si” is
formed in the roaming path. (This specific attack broke the
Cheng-Wei scheme as pointed out in [6].) In this case,Si and
Si−2 are the same host.Si−2 might substitute a new temporary
key pair (µ̄′′i−1, µ

′′
i−1) for Si−1 in tempi−1 and generate a

new O′′i−1 such thatO′′i−1 = Sigµ̄i−2(temp′′i−1), thenSi uses
µ̄′′i−1 to generate a newO′′i such thatO′′i = Sigµ̄′′

i−1
(temp′′i ).

However, such a truncation attack by forgingSi−1’s temporary
key pair will be detected byS0 when S0 receivesOi−1. S0

will find that µ′′i−1 counter-signed bySi−2 is different from
µi−1 signed bySi−1 in Sigv̄i−1(oi−1, µi−1, σi−3, σi−2).

VI. CONCLUSION

Mobile agents play an important role in electronic com-
merce, for both wired and wireless environments. A known
vulnerability in existing schemes is thetruncation attackwhere
two hosts visited by a mobile agent can collude to discard the
partial results collected by the agent between their respective
visits without being detected by the originator of the agent.

In this paper, we proposed a new scheme that is effective in
defending against the truncation attack. We also gave a brief
analysis to demonstrate that our scheme satisfies other security
requirements on the protection of agent data.

ACKNOWLEDGEMENT

The second author’s work was done during his attachment
to Institute for Infocomm Research under its sponsorship.

REFERENCES

[1] J. Cheng and V. Wei. Defenses against the truncation of computation
results of free-roaming agents. In4th International Conference on
Information and Communications Security, volume LNCS 2513, pages
1–12, December 2002.

[2] G. Karjoth, N. Asokan, and C. G̈ulcü. Protecting the computation results
of free-roaming agents. InMobile Agents, volume LNCS 1477, pages
195–207, September 1998.

[3] G. Karjoth and J. Posegga. Mobile agents and telcos’ nightmares.
Technical Report 55(7/8):29-41, IBM, 2000.

[4] T. Sander and C. Tschudin. Protecting mobile agents against malicious
hosts. InMobile Agents and Security, volume LNCS 1419, pages 44–60,
1998.

[5] B. Yee. A sanctuary for mobile agents. InSecure Internet Programming,
pages 261–273, 1999.

[6] J. Zhou, J. Onieva, and J. Lopez. Analysis of a free roaming agent
result-truncation defense scheme. In2004 IEEE Conference on Electronic
Commerce, July 2004.


