
TrUStAPIS: A Trust Requirements Elicitation
Method for IoT

Davide Ferrarisa, Carmen Fernandez-Gagoa

aNICS Lab, University of Malaga, 29071 Malaga, Spain
{ferraris,mcgago}@lcc.uma.es

Abstract—The Internet of Things (IoT) is an environment
of interconnected entities, which are identifiable, usable and
controllable via the Internet. Trust is useful for a system such as
the IoT as the entities involved would like to know how the other
entities they have to interact with are going to perform. When
developing an IoT entity, it will be desirable to guarantee trust
during its whole life cycle. Trust domain is strongly dependent
on other domains such as security and privacy. To consider these
domains as a whole and to elicit the right requirements since the
first phases of the System Development Life Cycle (SDLC) is a
key point when developing an IoT entity. This paper presents
a requirements elicitation method focusing on trust plus other
domains such as security, privacy and usability that increase the
trust level of the IoT entity developed. To help the developers to
elicit the requirements, we propose a JavaScript Notation Object
(JSON) template containing all the key elements that must be
taken into consideration. We emphasize on the importance of the
concept of traceability. This property permits to connect all the
elicited requirements guaranteeing more control on the whole
requirements engineering process.

Index Terms—Trust, Internet of Things (IoT), Requirements
Engineering, System Development Life Cycle (SDLC),
JavaScript Notation Object (JSON)

I. INTRODUCTION

The Internet of Things (IoT) is an environment of intercon-
nected entities, which are identifiable, usable and controllable
via the Internet [1].

In a system such as the IoT, trust is the basis of the commu-
nication between the smart entities. In fact, an entity should
interact with another only if trust is established between them.
Due to the uncertainty, interoperability and the heterogeneity
of IoT achieving trust between is still a challenge. In addition,
considering that these aspects have been tackled by isolated
research communities, a holistic approach is desirable [2].

Requirements engineering is one of the first phases of the
System Development Life Cycle [3] and Software Develop-
ment Life Cycle [4] (in this paper we will refer to both of
them as SDLC). Collecting requirements in the early phases
of the SDLC is an important task that brings benefits to the
following phases of the SDLC and avoid problems that could
happen in later phases. The requirements are usually elicited
by developers following stakeholders needs. The stakeholders
are persons or companies having an interest in the system or
software developed.

Existing requirements languages have been widely used
with the introduction of Goal-Oriented methodologies [5–8]
but they have not been developed for IoT and do not consider

trust in relation to other security domains. Similarly, trust and
related domains such as security, identity, usability and privacy
were not considered properly in the first phases of SDLC [9].
On the contrary, in order to guarantee trust, it is important to
consider also other domains related to it, as Hoffman [10] and
Pavlidis [11] stated. Following this premise, Rios et al. [12]
have proposed a work considering privacy in trust negotiation,
and Gago et al. [2] moved forward considering both identity
and privacy connected to trust in the IoT field.

We aim to continue in this direction considering trust-related
domains holistically in IoT, extending the work in [13] where
the authors designed a framework to ensure trust in an IoT
entity during the whole SDLC.

In this paper, we propose a method to elicit requirements
related to trust and the other domains identified. We define a
JavaScript Notation Object1 (JSON) template to help devel-
opers to elicit the requirements. Finally, we emphasise on an
important property that could help the developer: traceability
[13]. This property creates a connection among requirements
and avoids domino effects or unintended consequences in case
of relaxing connected requirements. Furthermore, traceability
to the previous phases permits to justify why a requirement
has been elicited.

The paper is structured as follows. Section II describes the
background and the related work. In section III we introduce
our requirements elicitation method, TrUStAPIS, which type
of requirements we consider and how traceability works. In
section IV we describe an IoT scenario to illustrate how to
elicit requirements using TrUStAPIS. Finally, in section VI
we conclude the paper and discuss the future work.

II. RELATED WORK

A. Trust and Related Domains in IoT

IoT is a network of interconnected objects. Roman [1] states
that the goal of IoT is to enable things to be connected
anytime, anyplace, with anything and anyone, ideally using
any path network and any service. It is expected that these
entities will often have to interact with each other in uncertain
conditions. Mechanisms to solve this lack of information are
needed and trust can help address this need and overcome
uncertainty.

Trust is a difficult concept to define “because it is a multi-
dimensional, multidisciplinary and multifaced concept” [14].

1https://www.json.org

D. Ferraris, and C. Fernandez-Gago, “TrUStAPIS: A Trust Requirements Elicitation Method for IoT”, International Journal of Information Security
, pp. 111-127, 2019.
http://doi.org/10.1007/s10207-019-00438-x
NICS Lab. Publications: https://www.nics.uma.es/publications



Jøsang [15] defines trust as personal and subjective, for
McKnight [16] trusting someone means to depend on him,
no matter the consequences. Typically, there are two entities
(at least) involved in a trust interaction, one is the trustor (the
entity which places trust) and the other is the trustee (the entity
in which trust is placed).

According to Hoffman et al. [10] and Pavlidis [11] trust
is strongly dependent on other domains like privacy, identity
and security. From these definitions, Ferraris et al. [13] stated
that, in an IoT entity development, it is important to centrally
consider trust and related domains such as usability or identity.
Trust is related to each of them and they cover all the aspects
that can increase and guarantee trust in an entity.

In [17], usability is defined as “the capability of a product
to be understood, learned, operated and is attractive to the
users when used to achieve certain goals with effectiveness and
efficiency in specific environments”. In this work, the authors
identified various characteristics to enhance the usability in
the mobile device domain such as effectiveness, efficiency,
satisfaction and reliability.

Mahalle et al. [18] have proposed identity features that are
important to be taken into consideration such as authentication
and authorization.

B. K-Model

In [13], the authors proposed a framework to guarantee trust
in an IoT entity during the whole SDLC also considering
connected properties. This framework is composed of the
K-Model and transversal activities (documentation, metrics,
gates, traceability, threat analysis, risk management and deci-
sion making). Furthermore, the context layer is always present
in each phase. In an IoT environment, due to its dynamicity
and heterogeneity, we always need to take context into con-
sideration. The context can depend on the environment, on
law regulations or on the rules of the company that develops
the product. K-Model includes different phases to cover all
the system life cycle of a product, from cradle to grave. The
first one refers to the needs phase, where it is understood the
purpose of the new IoT product and the stakeholders have
a key role in it. After this phase, we define the requirements
phase where the developer elicits the requirements considering
all the important aspects of the previous needs.

The K-Model is shown in Figure 1. In this paper we focus
on the second phase, but also the output of the first phase is
fundamental to elicit the proper requirements. Moreover, the
requirements must be verified and validated in the final phases
of the K-Model. The arrows represent traceability among
phases. As we will explain in section III-C, traceability is also
important within phases, mostly in the requirement phase.

C. Requirement Engineering

In the state of the art, requirements engineering has been
widely used with the introduction of Goal-Oriented method-
ologies. I* developed by Yu [8] introduced the notions of
actor, goal and dependencies. SI* [6] is an extension of I*
regarding security and including notions related to security and

Fig. 1: K-Model [13]

trust. In addition, TROPOS [5], founded on the I* framework
methodology, was intended to support all the design activities
in the SDLC. Finally, Mouratidis and Giorgini extended the
Tropos methodology using Secure Tropos [7] by making
explicit which actor owns a service and is able to provide
it. Considering trust-related domains, Rios et al. [12, 19] have
highlighted how important is to consider privacy characteris-
tics during requirements engineering to ensure trust in trust
negotiation processes.

Mavropoulos et al. proposed a method to elicit security
requirements for IoT using JSON [20]. They state that “using
JSON format the process of requirements elicitation can be
automated, thus making the analysis of large IoT networks
more efficient”.

Our work takes these works into consideration and goes
further considering trust strongly related to other domains such
as security, usability and identity. In addition, we introduce
traceability to connect all these requirements among them.
Traceability is a property that is absent in the languages
previously mentioned. Finally, we propose a JSON template to
help developers to elicit the proper requirements considering
all the elements related to TrUStAPIS. All the requirements
will be written following the rules proposed in section III.

In conclusion, in the state of the art, there are a lot of works
related to eliciting requirements, but none of them takes into
consideration trust concerning other domains, neither takes
into consideration the dynamicity of IoT. This paper fills this
gap and proposes a requirements elicitation method that helps
developers to consider trust through the IoT SDLC.

III. TRUSTAPIS: A METHOD FOR IOT REQUIREMENTS
ELICITATION

A. Overview
As we outlined in section II, the second phase of the K-

Model concerns requirements elicitation. To include trust in
the SDLC, K-Model identifies a set of seven types of re-
quirements related to seven domains: trust, usability, security,
availability, privacy, identity and safety. They will be written
according to the needs identified in the previous phase and will
be elicited following the IEEE 830-1993 specification[21].



Each requirement must be elicited according to its domain
characteristics, i.e. for trust we need to consider its transi-
tivity and/or asymmetry and for privacy we need to consider
anonymity and/or confidentiality. Another important consider-
ation is that it is possible to have the same characteristics in
different domains (i.e. confidentiality belongs both to privacy
and security domains). Finally, it is possible that a requirement
could have one or more sub-requirements. This is an important
feature that helps the developers to specify a requirement using
additional information for each of the sub-requirements.

To fulfil these needs, we introduce a requirement elicitation
method named TrUStAPIS. Using this method, the developer
could take into consideration trust and its related domains
through the requirements elicitation process. TrUStAPIS is
an acronym that comes from the use of the first letters of
each of the seven domains considered: Trust (fully written
because it is the central one), Usability, Security, Availability,
Privacy, Identity and Safety. This method allows the developer
to elicit the requirements regarding their domain and connect
them through traceability. Moreover, it is possible to elicit the
requirements considering dynamicity aspects related to IoT
thanks to the context parameter. The method is composed
of several elements: actors, actions and measures, goal and
context.

• Actor. An actor can be a human or an IoT entity. It is
the one that fulfils or asks to fulfil a goal to another actor.
An actor could have different roles (i.e. in a trust domain,
the actors are trustor and trustee). According to Gago et
al. [2] humans can be considered as IoT entities. In the
case of requirement elicitation process, we consider them
separately because to elicit the proper requirements we
shall distinguish the type of actor.

• Action. An action is related to the task performed by the
actor. An action could have zero or more measures. A
measure is a value related to its domain. It helps stake-
holders and developers to model the right requirements
that should be verified and validated in the later phases
of the K-Model.

• Goal. A goal is the final purpose for which the require-
ment is being identified. It is achieved by actors through
proper actions. This goal is related to a particular capa-
bility of the IoT entity and it depends on the requirement
domain. Depending on the dynamicity of IoT, the same
actor can have a different goal or perform different actions
to fulfil it. Each goal is associated with a particular action,
also called goalAction.

• Context. The context is strongly related to the require-
ments domain: trust, usability, security, availability, pri-
vacy identity and safety. Each of these domains could
have its own characteristics. The context could change
dynamically according to IoT paradigm and it is related
to the environment (where the action is performed) and
to the scope of the goal.

We propose a conceptual model in Figure 2 to show the
relationships among the components of TrUStAPIS.

In this conceptual model, we present all the components
related to TrUStAPIS method. Concerning the actor, we can
see that it could be a human or an IoT entity and it is the
subject of the requirement. Each actor plays a role, depending
on the context. An action is the verb of the requirement and
it could be performed to fulfil or to request a goal. In the first
case, the object of the requirement is the goal. In the second
case, the object of the requirement is another actor that can
perform an action to fulfil the proposed goal. It is possible that
an action could have zero or more measures. These measures
are important to reach the goal and to verify and validate the
requirements in the following phases of the K-Model. Finally,
we can see that a context is composed of three components:
a scope, an environment and a domain. The scope is related
to the purpose of the goal an actor wants to fulfil. Then, the
environment is related to the physical place where the action
is performed. With the term domain, we refer to the seven
types of requirements identified. Each domain could have its
proper characteristics that we will present in the following
subsections.

Relationships among concepts are given by the arrows. Each
arrow contains some text that describe the dependence from
one concept to another. The direction is that of the arrow. An
optional dotted arrow is considered if a goal must be fulfilled
by a secondary actor. The triangle represents specialization
(i.e. an actor could be a human or an IoT Entity). Finally, the
rhombus is a composition element (i.e. the context is always
composed of a domain, an environment and a scope).

In addition, to help the developers to elicit the proper
requirements, we propose a JSON template that is shown in
Figure 3.

We have chosen JSON because it is schematic and it is
supported by many languages such as Java2. It is easily read-
able by humans and machines. This aspect permits to share
the requirements code between stakeholders and application
[22]. Furthermore, it is possible to map the needs identified
in the first phase of the K-Model into the JSON code and
this implementation is useful in the following phases of the
K-Model (model, development and verification), helping the
developers to automatize the process.

The JSON template is composed of all TrUStAPIS main
elements. The IoT requirement is always composed of a
context, an actor, an action and a goal.

Iot Requirement : (Context, Actor, Action, Goal)
The context is divided into the requirement domain, the

environment and the scope of the requirement. It is important
to underline that the domain could be only one for each re-
quirement. Each domain could have one or more characteristic
that will define the requirement when it will be written.

Context : (Domain, Environment, Scope)
Each actor plays a role and falls into a type (human or IoT

entity). All actors involved in the requirement must be set.
Actor : (Role, Type[Human, IoT Entity])
An action is composed of types and optional measures.

2https://www.java.com



Fig. 2: Conceptual Model for TrUStAPIS

Fig. 3: TrUStAPIS JSON template to elicit requirements

Action : (Type[Fulfil, Request], Measure (optional))
Finally, the goal can help the developer to seek the con-

nections beneath the requirements. In fact, it is possible that
requirements belonging to different domains could be related
if they have a similar or a same goal.

Following the JSON template schema, it is possible to elicit
proper requirements. A written requirement need to be at
least composed of one actor, a keyword (“shall”) and a goal

fulfilled by an action.
A written requirement could optionally have:
• One or multiple secondary actors performing an action to

fulfil the goal.
• One or multiple actions necessary to perform the final

goalAction.
• One or multiple measures. These values are useful for

stakeholders and developers to model and verify/validate
the requirements.

This structure is formalized by the following statement (1).
(1) Actor shall predicate

The subject of statement (1) is also known as the main
Actor.

We have decided to use shall as a keyword and not should or
must because shall defines that the requirement is contractually
binding, it must be implemented and verified/validated.

The predicate in its basic form is composed of a goalAction.
In addition, it is possible to have more complex predicate. It
could be composed of secondary actors, actions and/or mea-
sures. This composition is strictly dependent on the context.

In the following subsections, we explore and describe which
characteristics must be taken into consideration when the de-
veloper writes a requirement specification for each requirement
domain.

B. Requirements

In this section, we propose the seven requirements domains
composing TrUStAPIS. It is important to state that some
characteristic might be present in more than one domain.



Moreover, their descriptions will be different to better rep-
resent the domains they are belonging to. We will show how
the characteristics are used in section IV.

1) Trust Requirements: Trust has some characteristics de-
fined by many authors in state of the art [11, 23–30]. These
characteristics will be used to write the proper trust require-
ments. We have highlighted the ones related to IoT.

1) Direct. Trust is based on direct experience between the
trustor and the trustee. In this case, we can also say that
trust is history-dependent because it depends on the past
experience between the two actors. In this case, trust can
also be subjective.

2) Indirect. When the trustor and the trustee have no
past interactions, trust is based on the opinion and the
recommendation of other entities. These entities must be
trusted by the trustor. Objective trust and reputation are
usually considered as indirect characteristic of trust.

3) Transitive. We can say that trust is conditionally trans-
ferable from an entity to another.

4) Dynamic. Trust is not static over time, even if it is not
strictly time dependent.

5) Local. It depends on the couple trustor/trustee consid-
ered (i.e. Alice/Bob) and if we consider another couple
(i.e. Alice/Charlie) it is possible that Alice does not trust
Charlie, also if Bob trusts Charlie.

6) Global. This is useful when there is no direct knowledge
of an entity, so a global reputation value is used to
compute an initial trust value.

7) Specific. The trustor (i.e. Alice) can trust the trustee (i.e.
Bob) for a particular action or service but not for other
purposes. For example, we can say that Alice can trust
Bob as a developer but not as a driver.

8) General. If needed, it is possible to compute a general
trust value by aggregating all the specific values related
to point 7.

9) Asymmetric. Trust can be asymmetric, this means that
two entities tied to a relationship may trust each other
differently, so the fact that Alice trusts Bob does not
imply that Bob should trust Alice.

10) Measurable. Trust needs to be measured. This is im-
portant for trust modelling and computation.

11) Composite-property. Trust can be a composite prop-
erty of different parameters: attributes (i.e. reliability,
dependability, honesty) and characteristics (all the prece-
dents). Each of these parameters may have different
weights and must be computed even if it is measured
through different metrics.

In this domain, the actors related to statement (1) are basi-
cally two and as we mentioned earlier they are named trustor
and trustee. It is possible that another actor, or even more, are
present as a trusted third party to fulfill a trusted goal. Finally,
it is possible to have measures (i.e. trust thresholds) to decide
whether to trust or not another entity.

2) Usability Requirements: Usability is an important prop-
erty that can increase the level of trust of an IoT entity. Us-
ability has a different meaning depending on whether the IoT

entity is a person or an object. For this reason, the context is
fundamental to decide which characteristic is more important
to elicit the proper usability requirements. According to [17],
we refine usability related characteristics that are important for
IoT. They are:

1) Effectiveness. It is important to achieve the desired
result.

2) Efficiency. It is important to save resources and speed
up the communications between IoT entities.

3) Simplicity. It is important to reduce the complexity of
communication between IoT entities. This is also an
important characteristic for the users. If they have to
interact with a device, a simple user interface improves
usability.

4) Understandability. In IoT, there are many commu-
nication protocols such as ZigBee3 or Zwave4. It is
important to consider this aspect early in the SDLC
to elicit the proper requirements. In fact, knowing the
different protocols used for IoT communication it is
possible to implement them or not according to the
final IoT architecture (i.e. distributed or centralized)
giving to the IoT entity the ability to communicate with
the others. Also for the user, an understandable user
interface increases the usability.

5) Accessibility. To grant accessibility via the internet is an
aspect that increases the stability of an IoT entity but it
raises security issues. For example, to be able to access
to a smart home IoT entity even from outside ensures
accessibility of the device improving its usability (i.e.
not only at home).

6) Flexibility. To make an IoT entity connectible and
reachable from different users and devices increases its
usability.

7) Reliability. This is an important aspect strongly related
to trust. Increasing the reliability of an IoT entity im-
proves its usability and increases its trust level.

Usability is strongly connected to the interface of the
developed IoT entity. A device-to-human interface is different
from a device-to-device one, so it is important to consider
the proper actor (human or IoT entity) to elicit the right
requirement. Thus, it is very important to consider how to
increase usability for the proper actor involved.

3) Security Requirements: In IoT field, as stated before,
it is important to take into consideration the dynamicity,
the heterogeneity and the context during the requirement
elicitation process. To guarantee security in IoT it is mandatory
to consider this fundamental aspect of IoT.

According to [31, 32], we take into consideration the
following security characteristics:

1) Authentication. It is important that each entity is au-
thenticated.

2) Authorization. An entity must be authorized to perform
an action.

3http://www.zigbee.org/
4http://www.z-wave.com/



3) Integrity. The integrity of the data is a fundamental
characteristic that increases the trust level of the IoT
entity.

4) Confidentiality. The communication between IoT enti-
ties must be confidential (depending on the context).

5) Delegation. In IoT, more than non-delegation, it is
important to delegate rights to other entities. This del-
egation is strictly related to the context and could be
user-dependent or time-dependent.

6) Non-repudiation: it is important that the action per-
formed could be stored to analyze which entities have
been involved in it.

All the previous security characteristics, according to the
context of the IoT entity, must be taken into consideration
during the security requirements elicitation process.

Considering statement (1), we can state that the actor shall
perform or request a security action to fulfil a security goal.
Examples of security measures can be security levels (i.e.
usually expressed in bits) or types of encryption.

4) Availability Requirements: Availability is considered as
a characteristic of security in other works such as [10, 11, 32].
Along with Confidentiality and Integrity they are known as the
CIA triad. We have decided to put it in a self-domain because it
is related also to other aspects (i.e. identity, usability) and also
dependent on the hardware. The type of availability is strongly
related to the context and the dynamicity of IoT. According
to this, the availability of a service can be dependent on
a particular period of time or service. To guarantee that
availability could improve the level of trust, it is fundamental
to grant the service when it is needed. This requirement can be
functional or non-functional [21]. The main actor, in this case,
is the IoT entity and the goalAction is to provide a service even
if something wrong has occurred. As a measure, it is useful
to have a threshold to raise the alarm or a warning to the user
and perform the corrective actions.

Considering the work proposed by Farooq et al. [33], we
identified several availability characteristics that are important
for IoT:

1) Resilience. Resilience is the ability to keep working
and recover quickly even if bad conditions occur (i.e.
malfunctioning, attacks). It guarantees availability

2) Scalability. The IoT is an environment extremely dy-
namic. Scalability is required to maintain the availability
of the services produced by the entity.

3) Redundancy. It refers to the replication of the informa-
tion. It is strictly connected to scalability.

4) Integrity. Data and devices could be available only if
their integrity is not compromised.

5) Privacy Requirements: High privacy could ensure cus-
tomer’s trust but can be a problem for the vendor’s trust. In
fact, a vendor should prefer to collect information on the users
for business purposes and, on the contrary, a customer does
not prefer to spread personal information.

To elicit privacy requirements for an IoT entity, according
to [31, 34], we take into consideration the following charac-
teristics of privacy:

1) Anonymity. It should be important for the entities to
remain anonymous during determined actions.

2) Pseudonymity. This characteristic can be important in
case it is not possible to remain anonymous.

3) Undetectability. This characteristic guarantees to the
entity to not be sufficently distinguished, it is a fun-
damental characteristic to avoid attacks.

4) Unlinkability. The user could not be linked to particular
data. Together with Anonymity, it guarantees Unobserv-
ability.

5) Confidentiality. The communication between entities
could be encrypted to guarantee confidentiality.

These characteristics of privacy comply with the General
Data Protection Regulation (GDPR) 5.

Privacy requirements could arise in conflicts with identity
requirements. Depending on the context and the IoT environ-
ment it is possible to consider privacy more than identity or
vice versa.

In this domain, the actors presented in statement (1) shall
perform actions to fulfill a privacy action. So, the main actor
shall guarantee privacy or avoid privacy issues considering
the characteristics highlighted earlier. The measures related
to privacy could be helpful to monitor privacy levels (i.e.
according to differential privacy [35]) and whether they are
respected or not.

6) Identity Requirements: Identity is very important for
IoT entities. To know the interacting entities is a basis to
trust them. Identity is strongly related to privacy. The more
is known about an entity the less its privacy is guaranteed.
For this reason, it is very important, since the early phases of
the SDLC, to decide and apply how much information it is
possible to obtain regarding an entity.

According to [18], we identify the following identity char-
acteristics to elicit the proper identity requirements in IoT:

1) Authentication. This is a security characteristic, it is
important also for identity management because if an
actor is authenticated the system can identify and trust
or not trust him/her;

2) Authorization. It is related to security and authentica-
tion, once authenticated, an entity could be authorized
to perform an action.

3) Attributes. Attribute exchange is very important in iden-
tity management because through attributes it is possible
to perform identification (often preserving privacy).

4) Interoperability. Identity management enhances inter-
operability between IoT entities because if an entity is
identified could interact with the other IoT entities.

5) Storable. Identity information must be stored and pro-
tected.

6) Manageable. Identity data must be manageable by the
IoT entity. We intend manageable generally. It could be
related to the computation of user data or to store them.

5https://gdpr-info.eu/



7) Scalability. In a particular context, scalability permits
to have a resilient way to store and manage identity
information.

8) Accountability. Through identity management, it is pos-
sible to recognize which actor has performed an action.
This characteristic permits to guarantee accountability.

Identity and privacy could raise conflicts between their
domain requirements, so context, traceability and specification
of the identity characteristics during the requirement elicitation
process help to solve them or permits to discover them early
in the SDLC. Anyway, it is out of the scope of this work
to solve conflicts among requirements, it will be done in
future work. The main actor presented in statement (1) must
fulfill an identification action following one or more of the
identity aspects highlighted before. In this case, the secondary
actor could verify the identity properties of the first actor
authenticating the identity attributes of the actor (i.e. code,
id).

7) Safety Requirements: Safety is defined by the Oxford
dictionary6 as “The condition of being protected from or
unlikely to cause danger, risk, or injury”.

Safety depends on people and machinery [36], basically, it
is related to the physical point of view of an IoT smart object.
The parameters that must be taken into consideration are the
ones related to avoiding the possibility to damage the actors
involved.

The characteristics of safety are basically related to the
hardware level and physical functionalities. In IoT, it is im-
portant because all the devices have embedded software and
its utilization is strongly dependent on the device itself.

We propose the following safety characteristics according
to [36–38]:

1) Feedback. The users must be aware of malfunctions,
so the IoT entity shall provide to him/her information
about its status. This characteristic could prevent harmful
situations.

2) Protection. On one hand, the entity must be preserved
from physical damages. On the other hand, the users
must be preserved by the entity’s process that could be
dangerous for them.

3) Resilience. Resilience is the capacity of a system to
continue its work also under attacks or malfunctions.
It is important for safety of the device and the users.

4) Integrity. This characteristic is related to the physical
integrity of the device. Through protection, IoT entity
shall be preserved from external and internal damages
that can compromise its working state.

Safety, if maximized, can improve the level of trust of an
IoT device. Like the other domains, it is strongly dependent on
the context (in particular on the environment). The safety goal
shall guarantee safety for all the actors involved for example
to prevent the IoT entity to overheat.

6https://en.oxforddictionaries.com/definition/safety

C. Traceability

Our way to use traceability was introduced in [13] but
we will expand it in this paper going deeply in its use and
definition. Traceability permits to connect phases forward and
backward between them in the K-Model. In addition, it is
particularly important in the requirements engineering phase
because it permits to connect requirements to the correspond-
ing documents, models or other requirements. The traceability
permits to avoid unintended consequences or domino effects
due to the deletion of a particular requirement. In fact, the
deletion could affect other connected requirements. Using
traceability it is possible to be aware of these connections
and to relax or modify them according to the new asset.

In IEE 830-1993 [21] two types of traceability have been
proposed: Backward Traceability (BT) and Forward Traceabil-
ity (FT). BT permits to trace the source of a requirement. It
can be a need, a document or another requirement as stated in
[13]. FT leads to children requirements, model specifications
or system features.

According to the K-Model, we identify another type of
traceability: Inner Traceability (IT). By IT we mean the
one between the requirements of different domains. So we
can connect a trust requirement to a privacy one and this
connection needs to be specified. While we use BT to connect
a requirement with its parent-requirement and FT to connect
a requirement with its sub-requirements, we consider IT to
connect requirements of the same level.

It is easier to guarantee BT, FT and IT with a unique iden-
tification number. The connections between requirements will
be mapped in the same requirement data. How a requirement
is composed and saved in its domain database is shown in
Table I.

In the first cell, there is the field ID. This is the identification
number of the requirement. The ID is unique and depends on
the type of requirement. For example, an identity requirement
ID is “IDNT-XX” and a security requirement ID is “SEC-XX”
where XX is the number of the requirement.

The second cell is related to the requirement specification.
This is the text of the requirement and it must be written
following the IEEE 830-1993 standard [21] and considering
the TrUStAPIS paradigm proposed in statement (1). This field
is very important and permits developers to understand what
the IoT entity shall do to fulfil the needs elicited in the first
phase of the K Model. The third, fourth and fifth cells are
related to BT, FT and IT. They are the IDs of the other related
requirements.

The requirements must be saved in a proper database,
containing all the requirements divided in tables related to
their domains (i.e. there will be a table containing all the trust
requirements, another one related to the privacy requirements
and one for each other type of requirements).

TABLE I: Requirement composition

ID Requirement specification BT FT IT



Fig. 4: Requirements Relationships

Figure 4 shows the relationships between requirements
of the same type (parent and child), different type (Trust
requirement and Privacy requirement) and connected phases
of the framework. These connections are critical because they
can map why a decision has been made. In addition, in case
modification is needed and a requirement must be changed,
it is possible to understand which other requirements will
be affected by this modification. Knowing this information,
it is possible to avoid problems in later phases. Figure 4
is an example where a trust requirement is shown (in the
centre) that has connections with a specific need, its sub-
requirement and a privacy requirement. In case the central
requirements must be deleted, this change will affect the other
requirements connected and the proposed need will be not
fulfilled. In case of requirements modification, the traceability
is important in order to follow the impacts that this change
could have on the connected requirements and perform the
corresponding corrective action (i.e. delete or modify the
connected requirements).

D. Methodology

In this section, we present a step-by-step format about how
to apply the TrUStAPIS methodology. The steps are shown in
Figure 5.

The output of each step is used during the following steps.
1) The first step is related to the output of the previous

phase of the K-Model (i.e. Need). This output is pro-

Fig. 5: Requirements elicitation: step-by-step methodology

vided through the documentation containing related to
the smart entity under development according to the
stakeholders’ needs.

2) As the second step, according to the needs, the developer
must fill the JSON template proposed in Figure 3
considering the conceptual model elements shown in
Figure 2. The conceptual model helps the developer
to order the idea of writing the requirement and to
fill correctly the JSON code. Both are useful to write



the proper requirements. In addition, the JSON code
will be considered as an input for the following phases
of the K-Model (i.e. Verification). Through, the JSON
code it will be possible to automatize the requirement
elicitation process too as proposed by [20]. Anyway, in
our approach, we will use it to order the idea and to
give to the developer a tool to elicit requirements.

3) The third step is about writing and eliciting the require-
ment, they must comply with the IEEE 830-1993 for-
malism [21]. According to this recommended practice,
a requirement must be correct, complete, unambiguous,
complete, consistent, ranked, verifiable, modifiable and
traceable. Statement (1) guarantees that the requirement
is complete and it helps the developer to write a correct,
unambiguous and consistent requirement. The JSON
template guarantees that a requirement could be verified
automatically in the following phases of the SDLC. In
the case of modification either the written requirement
and the JSON must be changed. A modification could
be made because of conflict arisen with another require-
ment or because of a stakeholder need change. Anyway,
in this paper we do not consider these two cases.
Finally, as we explained in section III-C traceability is
guaranteed in TrUStAPIS through BT, FT and IT. The
JSON code helps the developers understanding which
traceability must be considered among requirements.
In fact, if two or more requirements have a common
goal or related characteristics (i.e. the same one) they
should have a traceability relationship. In the case of
the traceability is among different domains it will be an
IT type. Because a requirement must be correct, com-
plete, consistent and unambiguous it could be helpful to
create sub-requirements to specialize it. In this case, the
traceability relationship will be a BT or FT one.

4) The fourth step of the methodology is related to the final
elicited requirement, compose as shown in Table III. As
we can see, there is a dotted line moving from Step 4
to Step 1. This arrow is needed because it is possible
that a requirement could be rewritten according to new
or modified needs. In this case, the developer rewrites
the requirement following the steps as shown before.

This systematic methodology helps the developers to follow
a guideline that reduces the subjectivity of the experts eliciting
the requirements.

In the next section, we provide a scenario to show how
TrUStAPIS method must be implemented.

IV. SCENARIO: SMART CAKE MACHINE

In this section we exemplify the methodology presented in
Section III-D in a use case of a Smart cake machine.

A. Step 1

Let us expand the use case scenario regarding a Smart Cake
Machine (SCM) introduced in [13]. According to that, we have
assumed that analyzing the needs documentation, it is possible
to understand that the customers need an SCM that tells them

which ingredients are necessary in order to bake a cake. The
temperature of the SCM must be checked and it could not
overcome 250°C. The recipes must be downloadable from the
vendor website or inserted manually by authenticated users.
Authentication must be done by a user name and a password.
The SCM could interact with a Smart Fridge (SF) to check
whether a particular ingredient is in the fridge or not. If not,
the SCM could interact with a trusted Smart Supermarket
(SM) through the home Smart Hub (SH) and order the missing
ingredient. The communication among the smart home entities
must be guaranteed and encrypted. These relationships are
shown in Figure 6.

Fig. 6: Smart Cake Machine and its relationships with the
other IoT entities

The dotted line between the SCM and the SH and between
the SH and the SM are related to the fact that there is an
indirect connection between the SCM and the SM. In fact, the
SCM must delegate the SH to interact with the SM.

Considering these needs and the context, we can elicit the
proper requirements using the TrUStAPIS method. This phase
is of fundamental importance to continue the development of
the SCM. According to the K-Model, the output of this phase
will be the input for the modelling phase.

B. Step 2

After the need documentation is analyzed in the previous
step, we continue to step 2.

Following the JSON template that is shown in Figure 3, we
set up the JSON code related to our use case and requirements.

Using the JSON template and the conceptual model, it is
possible to fill the JSON according to the needs identified
before. The JSON code presented in Figures from 7 to 11
contains the parameters related to each requirement. These
parameters are elicited from the needs.

We model the relationship between the SCM and the SM. To
assign a trust value we need to consider some characteristic of
trust (i.e. direct, measurable) and the type of action (i.e fulfill).
This trust value will be used by the SCM to decide whether
to trust or not to trust the SM.

We analyze next the JSON code in Figure 7 (from line 2
to 16). The specific identifier related to the requirements is
shown in rows 2.

row2−“IoT_requirement_TRST01”



Fig. 7: JSON code part 1

As we mentioned earlier, the trust requirements has some
characteristics (row 6) needed to compute the trust value.
These characteristics must highlight particular aspects that we
want to represent with the elicited requirements.

row6−“Characteristic” : [“Direct”, “...”, “Measurable”]

In this case, the characteristics are: direct, indirect, global,
general and measurable. We use direct, indirect and global
to define that the trust level must be computed. A subjective
value for the SCM (depending on the past interactions with
the specified SM) is known as a direct trust. Then, an objective
value is needed. There are two kinds of objective values:
an indirect value and a global value. The indirect value is
computed from known entities, a global value is computed
by a centralized authority according to the trusted entities of
the system. In this case, an indirect value could be the one
computed by the SF (in the case it has a past relationship
with the SM) and the global value could be computed by the
vendor website (collecting the data of all the SCM interacting
with an SM). Because an IoT environment is dynamic, it is
important to take into consideration the possibilities that other
entities could join or leave the network [39]. General is related
to the fact that it is possible to have a single trust value for
each entity, in this case, for example, the SM could have a
single computed value related to its trust level even if there
are different important parameters (i.e. time, distance, price,
quality). We do not discuss now how these values could be
computed, but it is important to underline that to compute
trust we need trust metrics. For this reason, the final trust
characteristic taken into consideration is measurable.

As we can see in row 10, the roles are both a trustor and a
trustee.

row10−“Role” : [“Trustor”, “Trustee”]

In fact, in our case, the SCM is the trustor (the entity that
orders the ingredients) and the Trustee is the SM (the entity

that must provide the ingredients).
With this requirement, we basically want to fix a trust value

(goal: row 15) between the two IoT entities: the SCM and an
SM (row 11). The action is a goalAction because the type is
fulfill (row 13) and it has a measure (row 14) computed from
the characteristics defined before.

row11−“Type” : [“SCM”, “SM”]
row13−“Type” : [“Fulfil”]

row14−“Measure” : [“Trust level”]
row15−“Goal” : To fix a trust value

The second requirement that we model from the needs is a
usability requirement:

row17−“IoT_requirement_USAB01”

It is represented in Figure 7 from lines 17 to 31.
This usability requirement is composed by the sentence

“The recipes must be downloadable from the vendor web-
site or inserted manually by authenticated users.” Because a
requirement must be complete, we must create (at least) two
separate requirements, one for the “download” part, the other
one for the “manual” part. In this case, we focus only on
the second part, so the requirement USAB01 will be elicited
according to this need. For a user, it is important that the
procedure of inserting new recipes must be simple and the user
interface understandable. For this case, we do not decide how
the recipes must be inserted (i.e. by a smartphone, a website,
the user interface of the SCM), we only model that the user
shall be able to insert new recipes. To have more specific
requirements, sub-requirements are needed.

row21−
“Characteristic” : [“Simplicity”, “Understandability”]
row21−“Goal” : [“Let the user insert new recipes”]

Fig. 8: JSON code part 2

In Figure 8, we have two security requirements. One is
related to the authentication characteristic (row 36) and the



other one related to delegation (row 51). According to the
needs, the authentication one is related to the fact that a
user, to interact with the SCM, must be authenticated. The
second requirement is related to delegation, in fact, the needs
document specifies that the SCM must communicate with the
SM only through the SH, so in this case the SCM delegates
the SH to order the ingredients.

row36−“Characteristic” : [“Authentication”]
row51−“Characteristic” : [“Delegation”]

Concerning the actors, in SEC01 the actors are the human
user and the SCM (row 41). Whereas, in SEC02 the actors are
two and they are the SCM and the Smart Hub (row 56).

row41−“Type” : [“Human User”, “SCM”]
row56−“Type” : [“SCM”, “Smart Hub”]

Fig. 9: JSON code part 3

According to the needs, we can state that for the availability
requirement the important characteristic is Resilience. In fact,
to guarantee the availability of the communication between
the entity, resilience guarantees to be available also in the case
of malfunctions or attacks. In this case, we require only that
the communication is available. How resilience is guaranteed
will be implemented in the following phases of the SDLC
or by other sub-requirements. The “scope” is related to the
connectability between IoT entities (row 68) and the “goal” is
related to providing the connection between the IoT entities
(row 75). In the first part of Figure 9, we can see the JSON
related to the availability requirement.

row66−“Characteristic” : [“Resilience”]
row68−“Scope” : “Connectability between entities”

row75−
“Goal” : “To provide connection between the IoT entities”

In the second part of Figure 9, it is represented the privacy
requirement. It is elicited by the need that expresses that the
communications must be encrypted.

We model the requirement considering the confidentiality
characteristic (row 81) and both the IoT entities involved (row
86) have the roles of “Encryptor” and “Decryptor” (row 85).

row81−“Characteristic” : [“Confidentiality”]
row85−“Role” : “Encryptor, Decryptor”
row86−“Type” : [“SCM, Smart Fridge”]

Fig. 10: JSON code part 4

The authentication need expressed in the Set-Up phase must
be covered also by identity requirements. In Fig 10, we can see
that we modeled two identity requirements, where the second
one is a sub-requirement of the first one (rows 92 and 107).

row92−“IoT_requirement_IDNT01”
row107−“IoT_requirement_IDNT01.1”

According to the need, we model the sub-requirement spec-
ifying that the authentication must be performed by username
and password. An important aspect is that the goal of the first
identity requirement is the same as the first security require-
ment shown in Figure 8. This is because the authentication
characteristic belongs to both the domains. These connections
are taken into consideration concerning the traceability as we
will see later.

Finally, in Figure 11 we can see two JSON codes related
to safety requirements. As for the identity requirements, the
second one is the specification of the first one. The need
expressed here is related to the temperature. In fact, according
to the needs, the SCM must check the temperature level and
it cannot overcome 250°C.

C. Step 3

After the second step (see section III-D) is complete, we
write down the requirements starting from the JSON codes
shown in Figures 7 to 11. These requirements will be writ-
ten following IEEE 830-1993 and statement (1) formalism.
Traceability is considered according to common goals, char-
acteristics and sub-requirements. The output of this third step
will be the final elicited requirement. The requirements are



Fig. 11: JSON code part 5

shown in Table II. We have created a requirements database
using Microsoft Access.

TABLE II: Requirements elicited using TrUsTAPIS

Trust Req. TRST01 - The SCM shall trust a Smart Super-
market with a trust level above 0.5

Usability Req. USAB01 - The user shall be able to insert new
recipes

Security Req. SEC01 - The user shall be authenticated
Security Req. SEC02 - The SCM shall delegate the Smart Hub

to order the missing ingredients
Availability Req. AVBT01 - The SCM shall be able to connect to

the Smart Hub
Privacy Req. PRIV01 - The SCM shall perform an encrypted

communication with the Smart Fridge
Identity Req. IDNT01 - The user shall be authenticated
Identity Req. IDNT01.1 - The user shall be authenticated by

user name and password
Safety Req. SFT01 - The SCM shall be able to check its

temperature level.
Safety Req. SFT01.1 - The SCM temperature level shall be

lower than 250°C

For the sake of simplicity and space motivations, we con-
sider only these few requirements but in a project, it is possible
to have hundreds or thousands of requirements.

Analysing the requirements presented in Table II, we can
confirm that there is always at least one actor, an action and
a goal as explained in section III. Each of these requirements
is stored in a requirement database for each domain table.

As stated before, we have traceability between SEC01 and
IDNT01. This type of connection is always present if the goal
is the same for different requirements or if a requirement is a
specialization of another one (Figure 10 and Figure 11).

D. Step 4

According to the requirement composition shown in Table I
we obtain Table III, Table IV and Table V related to the final
elicited requirements SEC01, IDNT01 and IDNT01.1.

As we can see, Inner Traceability (IT) is kept and there is a
connection between the two requirements. We can also see that

TABLE III: Security requirement: SEC01

SEC01 The user shall be authenticated na na IDNT01

TABLE IV: Identity requirement: IDNT01

IDNT01 The user shall be authenticated na IDNT01.1 SEC01

TABLE V: Identity sub-requirement: IDNT01.1

IDNT01.1 The user shall be authenticated
by username and password

IDNT01 na na

for requirement IDNT01, Forward Traceability (FT) points to
requirement IDNT01.1. Symmetrically, Backward Traceability
(BT) points from IDNT01.1 to IDNT01. With the term na we
specify that there is no connection present.

These relationships are represented in Figure 12.

Fig. 12: Traceability between requirements

As we can see, traceability is maintained between the iden-
tity requirement and the security requirement. This relationship
is bidirectional because if it is true that traceability exists
between the ID of IDNT01 and the IT field of SEC01, it is
also true that there is traceability between the ID of SEC01
and the IT field of IDNT01. We can see that the same happens
regarding IDNT01 and IDNT01.1 (saved in the DB table
“Identity sub-requirements” shown in Figure 12).

E. From Step 4 to Step 1

Now, we assume that the stakeholders decide to change
the authentication process passing from a user and password
authentication to a code authentication. Because the needs are
changed, so the requirements must be changed too. Thus, the
developers must delete the requirement (IDNT01.1) and add
another one (IDNT01.2). It is better adding a new requirement
deleting the old one and do not modify the old requirement.
In fact, each requirement ID must be related to only one
requirement elicited. So, in the case of a deletion, we have
to create a new ID for the new requirement. Through this
procedure, we implement traceability in the requirements
database connecting requirements among them. In our case, as
shown in Figure 12, there are connections between the identity
requirement and the identity sub-requirement and between the
identity requirement and the security requirement.

If we try to add the new requirement and delete the old one
without releasing the connections, an error is raised. In fact,
the developer cannot accidentally delete the relationship due



to the connection between IDNT01 and IDNT01.1. The trace-
ability feature allows the developers to check the connection
and, only after releasing it, it is possible to proceed with the
change of the requirement. This feature guarantees to avoid
domino effects in case of relaxing requirements.

In Figure 13, we propose the JSON related to IDNT01.2. We
can state that it is similar to the one related to IDNT01.2 but
the scope (row 8) and the goal (row 15) are related to the code
authentication instead of user and password authentication.

row8−“Scope” : “Code Authentication”
row15−“Goal” : “To authenticate the user by code”

Fig. 13: JSON code for IDNT01.2

Finally, we can see the new final elicited requirement
IDNT01.2 in Table VI and the modified connection regarding
IDNT01 in Table VII.

TABLE VI: Identity sub-requirement: IDNT01.2

IDNT01.2 The user shall be authenticated
by code

IDNT01 na na

TABLE VII: Identity requirement: IDNT01

IDNT01 The user shall be authenticated na IDNT01.2 SEC01

Considering a more complex scenario, traceability is a
powerful feature that permits to take into consideration and
manage all the changes that a modification could produce to
the database.

V. DISCUSSION

This method guarantees in-depth research and focuses on
the requirement elicitation process. On one hand, it is impor-
tant to say that this method requires to spend a considerable
amount of time during the requirement elicitation process. On
the other hand, the benefits of doing an in-depth requirement
elicitation process are large in terms of saved money and
increased quality of the project [40]. The benefits given by
a deep analysis of the security requirements are shown in

[41]. In our work, we consider, in addition to security, other
requirements connected to trust. This holistic view of the
requirements is needed to perform a complete requirement
elicitation process.

Moreover, the proposal of a step-wise systematic methodol-
ogy helps to mitigate subjective issues eliciting requirements.
In fact, one known issue of the requirement methodologies
is that even using the same method, the subjectivity of the
expert eliciting requirement is still present [42]. Our method,
even if it does not solve completely this problem, minimize it
giving to the developer a systematic step-by-step methodology.
Moreover, the JSON implementation could be the basis for
future directions related to the automation of the requirement
elicitation process, as proposed by Mavropoulos et al. [20].

The Scenario that we have proposed has some limitations
related to his complexity and on the number of requirements
proposed, but it is useful to understand how our methodology
is used. According to this simple scenario, the lessons learned
are that the methodology helps to elicit requirements according
to the stakeholder needs, avoiding mistakes related to the skip
of this phase and traceability helps to avoid domino effects
when some requirement must be changed. In addition, JSON
will be helpful also for later phases of the K-Model (i.e. the
verification phase) giving the possibility to automatize the
verification. Moreover, the JSON template will be the basis
to automatize also the process of requirement elicitation to
mitigate the subjectivity issue.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed TrUStAPIS, a JSON based
requirement elicitation method that helps the developer to elicit
the proper requirements during the SDLC of an IoT entity.
Considering the K-Model we have proposed in our previous
work, this methodology is used in the requirements elicitation
phase. The requirements considered are related to seven do-
mains: Trust, Usability, Security, Availability, Privacy, Identity,
Safety. To write the proper requirements, we have highlighted
for each of these domains a set of characteristics that must be
taken into consideration. An important feature of the method
is traceability. To have a holistic view of the developed IoT
entity, it is fundamental to connect the requirements between
them. This connection guarantees control and avoids domino
effects in case of relaxing requirements. Finally, to show how
the method works, we have presented a scenario related to a
Smart Cake Machine. Thus, we have shown how to elicit the
requirements and how the traceability works.

As a future work, we will expand the work by using
TrUStAPIS considering a real and more complex use case
scenario to demonstrate the validity and usefulness of the
proposed method. In addition, we are working on a decision-
making algorithm based on Analytic Hierarchy Process (AHP)
[43] to classify the possible conflicts among requirements, in
order to decide which requirement could be released or mod-
ified. This approach will permit developers and stakeholders
to decide which requirement to keep during the requirements
elicitation process. Furthermore, we will develop a tool to elicit



and store requirements according to TrUStAPIS method using
our JSON template. In this way, the requirement elicitation
process will be automatized mitigating the subjectivity issue
discussed before. Then, we will present a survey analyzing
our work compared to other requirement elicitation existing
methodologies.

ACKNOWLEDGEMENT

This work has received funding from the NeCS project by
the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agree-
ment No. 675320, the CyberSec4Europe project under SU-
ICT-03 programme grant agreement 830929, and the SMOG
project founded by the Spanish Ministry of Economy and
Competitiveness (TIN2016-79095-C2-1-R).

This work reflects only the authors’ view and the Research
Executive Agency is not responsible for any use that may be
made of the information it contains.

COMPLIANCE WITH ETHICAL STANDARDS

All authors declare that they have no conflict of interest.
This article does not contain any studies with human partici-
pants or animals performed by any of the authors.

REFERENCES

[1] R. Roman, P. Najera, J. Lopez, Securing the internet of
things, Computer 44 (9), 51-58 (2011).

[2] C. Fernandez-Gago, F. Moyano, J. Lopez,
Modelling trust dynamics in the internet of
things, Information Sciences 396, 72-82 (2017)
doi:https://doi.org/10.1016/j.ins.2017.02.039

[3] C. Haskins, K. Forsberg, M. Krueger, D. Walden,
D. Hamelin, Systems engineering handbook, INCOSE
(2006).

[4] D. Mellado, C. Blanco, L. E. Sanchez, E. Fernandez-
Medina, A systematic review of security requirements
engineering, Computer Standards & Interfaces 32 (4),
153-165 (2010).

[5] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J.
Mylopoulos, Tropos: An agent-oriented software devel-
opment methodology, Autonomous Agents and Multi-
Agent Systems 8 (3), 203-236 (2004).

[6] F. Massacci, J. Mylopoulos, N. Zannone, Security re-
quirements engineering: the si* modeling language and
the secure tropos methodology, Advances in Intelligent
Information Systems, Springer, 147-174 (2010).

[7] H. Mouratidis, P. Giorgini, Secure tropos: a security-
oriented extension of the tropos methodology, Interna-
tional Journal of Software Engineering and Knowledge
Engineering 17 (02), 285-309 (2007).

[8] E. S.-K. Yu, Modelling strategic relationships for process
reengineering, Ph.D. thesis, University of Toronto (1995).

[9] E. Paja, F. Dalpiaz, P. Giorgini, Modelling and reasoning
about security requirements in socio-technical systems,
Data & Knowledge Engineering 98, 123-143 (2015).

[10] L. J. Hoffman, K. Lawson-Jenkins, J. Blum, Trust beyond
security: an expanded trust model, Communications of
the ACM 49 (7), 94-101 (2006).

[11] M. Pavlidis, Designing for trust, CAiSE (Doctoral Con-
sortium), 3-14 (2011).

[12] R. Rios, C. Fernandez-Gago, J. Lopez, Modelling
privacy-aware trust negotiations, Computers & Security
(2017).

[13] D. Ferraris, C. Fernandez-Gago, J. Lopez, A trust by
design framework for the internet of things, NTMS’2018
- Security Track (NTMS 2018 Security Track), Paris,
France (2018).

[14] Z. Yan, P. Zhang, A. V. Vasilakos, A survey on trust
management for internet of things, Journal of network
and computer applications 42, 120-134 (2014).

[15] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and
reputation systems for online service provision, Decision
support systems 43 (2), 618-644 (2007).

[16] D. H. McKnight, N. L. Chervany, The meanings of trust,
Technical Report MISRC Working Paper Series 96-04
(1996).

[17] R. Baharuddin, D. Singh, R. Razali, Usability dimensions
for mobile applications: a review, Res. J. Appl. Sci. Eng.
Technol 5 (6), 2225-2231 (2013).

[18] P. Mahalle, S. Babar, N. R. Prasad, R. Prasad, Identity
management framework towards internet of things (iot):
Roadmap and key challenges, International Conference
on Network Security and Applications, Springer, 430-
439 (2010).

[19] R. Rios, C. Fernandez-Gago, J. Lopez, Privacy-aware
trust negotiation, International Workshop on Security and
Trust Management, Springer, 98-105 (2016).

[20] O. Mavropoulos, H. Mouratidis, A. Fish, E. Panaousis,
C. Kalloniatis, Apparatus: Reasoning about security re-
quirements in the internet of things, International Con-
ference on Advanced Information Systems Engineering,
Springer, 219-230 (2016).

[21] IEEE Computer Society. Software Engineering Standards
Committee, IEEE-SA Standards Board. IEEE Recom-
mended Practice for Software Requirements Specifica-
tions. Institute of Electrical and Electronics Engineers.
(1998).

[22] A. Alonso-Nogueira, H. Estevez-Fernandez, I. Garcia,
Jrem: An approach for formalising models in the re-
quirements phase with json and nosql databases, World
Academy of Science, Engineering and Technology, In-
ternational Journal of Computer, Electrical, Automation,
Control and Information Engineering 11 (3), 353-358
(2017).

[23] W. Abdelghani, C. A. Zayani, I. Amous, F. Sedes, Trust
management in social internet of things: a survey, Confer-
ence on e-Business, e-Services and e-Society, Springer,
430-441 (2016).

[24] T. Beth, M. Borcherding, B. Klein, Valuation of trust
in open networks, European Symposium on Research in
Computer Security, Springer, 1-18 (1994).



[25] J. Chang, H. Wang, Y. Gang, A dynamic trust metric for
p2p systems, 2006 Fifth International Conference on Grid
and Cooperative Computing Workshops, IEEE, 117-120
(2006).

[26] B. Christianson, W. S. Harbison, Why isn’t trust transi-
tive?, in: International workshop on security protocols,
Springer, 171-176 (1996).

[27] T. Grandison, M. Sloman, A survey of trust in internet
applications, IEEE Communications Surveys & Tutorials
3 (4), 2-16 (2000).

[28] S. P. Marsh, Formalising trust as a computational con-
cept, Ph.D. thesis, Department of Computing Science and
Mathematics, University of Stirling (1994).

[29] M. Nitti, R. Girau, L. Atzori, Trustworthiness manage-
ment in the social internet of things, IEEE Transactions
on knowledge and data engineering 26 (5), 1253-1266
(2014).

[30] Z. Yan, S. Holtmanns, Trust modeling and management:
from social trust to digital trust, IGI Global, 290-323
(2008).

[31] R. Mahmoud, T. Yousuf, F. Aloul, I. Zualkernan. Internet
of things (IoT) security: Current status, challenges and
prospective measures. In 2015 10th International Confer-
ence for Internet Technology and Secured Transactions
(ICITST) (pp. 336-341) (2015).

[32] M. U. Farooq, M. Waseem, A. Khairi, S. Mazhar. A criti-
cal analysis on the security concerns of internet of things
(IoT). International Journal of Computer Applications,
111(7) (2015).

[33] M. Bauer, M. Boussard, N. Bui, J. De Loof, C.
Magerkurth, S. Meissner, J.W. Walewski. IoT reference
architecture. In Enabling Things to Talk (pp. 163-211).
Springer, Berlin, Heidelberg (2013).

[34] A. Pfitzmann, M. Hansen. A terminology for talking
about privacy by data minimization: Anonymity, unlinka-

[39] D. Ferraris, C. Fernandez-Gago, J. Daniel, J. Lopez. A
Segregated Architecture for a Trust-based Network of

bility, undetectability, unobservability, pseudonymity, and
identity management (2010).

[35] K. Ligett, S. Neel, A. Roth, B. Waggoner, S. Z. Wu.
Accuracy first: Selecting a differential privacy level for
accuracy constrained erm. In Advances in Neural Infor-
mation Processing Systems (pp. 2566-2576) (2017).

[36] M. Lesk. Safety risks-human error or mechanical fail-
ure?: Lessons from railways, IEEE Security & Privacy
13 (2), 99-102 (2015).

[37] S. Singh, N. Singh. Internet of Things (IoT): Security
challenges, business opportunities & reference architec-
ture for E-commerce. In 2015 International Conference
on Green Computing and Internet of Things (ICGCIoT)
(pp. 1577-1581) (2015).

[38] Q. Gou, L. Yan, Y. Liu, Y. Li. Construction and strate-
gies in IoT security system. In 2013 IEEE international
conference on green computing and communications and
IEEE internet of things and IEEE cyber, physical and
social computing (pp. 1129-1132) (2013).
Internet of Things. In 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC)
(pp. 1-6) (2019).

[40] S. Friedenthal, A. Moore, R. Steiner: A practical guide to
SysML: the systems modeling language. Morgan Kauf-
mann (2014).

[41] R. L. Kissel, K. M. Stine, M. A. Scholl, H. Rossman,J.
Fahlsing, J. Gulick. Security considerations in the system
development life cycle (No. Special Publication (NIST
SP)-800-64 Rev 2) (2008).

[42] M. Geisser, T. Hildenbrand. A method for collaborative
requirements elicitation and decision-supported require-
ments analysis. In IFIP World Computer Congress, TC
2 (pp. 108-122). Springer, Boston, MA (2006).

[43] T. L. Saaty. Analytic hierarchy process. Encyclopedia of
Biostatistics, 1 (2005).


	Introduction
	Related Work
	Trust and Related Domains in IoT
	K-Model
	Requirement Engineering

	TrUStAPIS: A Method for IoT Requirements Elicitation
	Overview
	Requirements
	Trust Requirements
	Usability Requirements
	Security Requirements
	Availability Requirements
	Privacy Requirements
	Identity Requirements
	Safety Requirements

	Traceability
	Methodology

	Scenario: Smart Cake Machine
	Step 1
	Step 2
	Step 3
	Step 4
	From Step 4 to Step 1

	Discussion
	Conclusion and Future Work

