
High-level Specification of Security Systems

Javier López, Juan J. Ortega, José M. Troya
Computer Science Department

University of Malaga
Malaga, Spain

{jlm, juanjose, troya} @ lcc.uma.es

José L. Vivas
Hewlett Packard Labs

Bristol, UK
jose-luis.vivas@hp.com

Abstract— In order to study security systems, we have developed
a methodology for application of formal analysis techniques
commonly used in communication protocols to the analysis of
cryptographic protocols. In particular, we have extended the
design and analysis phases of protocol design with security
properties. Our proposal uses a specification notation based on
HMSC/MSC, which can be automatically translated into a
generic SDL specification.

Keywords-Security system, specification, design, analysis, SDL
language

I. INTRODUCTION

Nowadays it is widely accepted that critical systems have to
be analysed formally to achieve the well-known benefits
derived from the application of formal description methods
[13]. These methods allow the description of system behaviour
in a precise way and can be used to verify the specification. In
particular, the design and analysis of security systems can
greatly benefit from the use of formal methods, due to the
critical nature of such systems.

A security protocol [14] is a general template describing a
sequence of communications that makes use of cryptographic
techniques to meet one or more particular security-related
goals. In the present study we do not need to distinguish
between cryptographic and security protocols, and therefore
we regard them as equivalent. The international organization
ITU-T has produced the Recommendation Series X.800 [6,7]
with the aim of specifying the basic security services. Among
these, those provided by the basic security mechanisms
(cryptographic algorithms and secure protocols) are
authentication [8], access control [9], data confidentiality [11],
data integrity [12], and non-repudiation [10].

These services are commonly enforced using cryptographic
protocols or similar mechanisms. It is worth noting that in
order to specify a security critical system it is not necessary to
know how the future system will be analysed, but it is
certainly indispensable to identify the required security
services.

In recent years, cryptographic protocol analysis research
[16] has experienced an explosive growth, and numerous
formalisms have been developed. However, in our opinion the
results obtained from the analysis of cryptographic protocols

are not directly applicable to the design of secure
communication systems. Probably, one of the major reasons is
the lack of a strong relationship between the analysis tools
and the formal methods techniques commonly used in the
specification and analysis of communication protocols. To
bridge this gap is one of the major objectives of our approach.

We have developed a methodology for the specification of
secure systems which allows us to verify that they are not
vulnerable against both known and novel attacks [14,15]. Our
approach includes the use of a requirement language called
Security Requirements Specification Language (SRSL) to
describe security protocols, which can be automatically
translated into the ITU-T Recommendation Specification and
Description Language (SDL) [3], a widely used formal
notation well suited for protocol analysis. In addition, we have
developed verification procedures and tools to check several
security properties such as confidentiality, authentication, and
non-repudiation of origin. In this approach we use a simple but
powerful intruder process that is explicitly added to the
specification of the system. As a result, the verification of the
security properties guarantees the robustness of the protocol
against the attacks of this kind of intruder. This is known as
Dolev-Yao mechanism [2].

The structure of the rest of this document is as follows. In
Section 2 we give an overview of our specification and analysis
approach. Section 3 is dedicated to a detailed presentation the
SRSL language, and Section 4 to the description of an
application of SRSL to a real world case. Finally, in Section 5
we show some conclusions and give some suggestions for
future work.

II. METHODOLOGY OVERVIEW

In our approach (summarized in Figure 1) the design and
analysis of security protocols are carried out exactly as in
traditional communication protocols, but including the
security aspects.

First, the functional and security requirements of the system
are captured in the usual informal way. The resulting informal
specification, extended with the specification of behaviour
associated with a variety of possible attacks, can then be
described using our requirement language, SRSL.

J. Lopez, J. J. Ortega, J. M. Troya, and J. L. Vivas, “High-level Specification of Security Systems”, IEEE Globecom 2003 - Communications
Security Track, pp. 1506-1510, 2003.
NICS Lab. Publications: https://www.nics.uma.es/publications

SRSL specification

System specification (functional and security requirements)

SDL system Analysis strategy (SDL process)

Analysis Process

Code
Generation

attacker's behaviour

& Testing

Figure 1. Overview of our approach

SRSL is an extension of ITU-T Recommendations Message
Sequence Chart (MSC), and its expansion High-level MSC
(HMSC) [4], augmented with textual tags. We make use of the
HMSC/MSC text area to include these tags, which are used to
identify the security characteristics of the data being
transmitted, the intruder’s possible actions, and the security
analysis goals. In case the attacker’s behaviour is not
explicitly provided, we automatically generate a generic
process that tries to examine all possible attacks.

In order to draw the graphical SRSL specifications, any
standard MSC and HMSC editor can be used. In our case, we
have used Telelogic’s TAU, which also allows the automatic
translation of the graphical MSC diagrams into a
corresponding textual form. A translator program is then used
to obtain the SDL system from the SRSL description (this
program was written in C, using plain LEX and YACC tools).
The resulting SDL system is composed of: (1) a package with
the data types of the system for analysis; (2) a package with
one process type for each protocol agent; and (3) a collection
of process types (“observer” and “medium”) for the analysis
strategy.

In order to analyse the security properties, we evaluate the
behaviour of the SDL system under different kinds of attacks
(as specified by the medium processes defined in the analysis
strategy). The observer process provided by the TAU
Validator tool is used for these checks. Thus, we can check
whether a specific state is reached, or whether a particular data
is ever stored into the intruder’s database knowledge. We also
make use of the assert mechanism, which enables observer
processes to generate reports during the state space
exploration. These reports are maintained by the Report
Viewer, and can be examined to identify security flaws.

In addition, the SDL system generated from the SRSL
specification can be used to automatically generate C or C++
code, which can thus interact with exiting applications. In
order to generate this code we need to replace the data types
package with a corresponding package that defines the data

types in ASN.1 or C. This prototype can also be used for
testing, which is part of our future work.

III. THE SRSL LANGUAGE
SRSL is intended to be a high-level language for the

specification of cryptographic protocols and secure systems.
The requirements that have guided the design of SRSL are
modularity (for the sake of reusability), suitability for
expressing security notions, and to be easy to learn.

As a natural initial model for SRSL we selected the
requirements language most widely used in
telecommunications, namely MSC and its extension HMSC.
With MSC we can specify elementary scenarios, and with the
HMSC we can compose the latter to obtain more complex
protocols. The version we have considered is the one previous
to the MSC 2000 [5] release, but we plan to use the latter in a
future version.

SRSL is divided into two main parts. The first one contains
the definition of the protocol elements and the security analysis
strategy. The second part describes the message exchange flow.

The first part is textual. The syntax of its main elements is
shown in Figure 2. These elements can be grouped into
different categories, and are listed below (language keywords
in italics):

Entities: Agent, principal identification; Messages: Data,
message text; Random, number created for freshness, also
called nonce; Timestamp, actual time; Sequence, counter.
Keys: Public_key, a pair of public and private keys;
Symmetric_key, used for symmetric encryption; Shared_key,
symmetric key shared by more than one entity; Session_key,
a fresh symmetric key used to encrypt transmission.

The “knowledge” section contains the information needed
to describe the initial knowledge of each party of the protocol.

The “security_service” section is split into the intruder’s
strategy section and the security property section. The first one
defines a possible attack scenario. The second describes the
security properties we want to be enforced by the protocol. We
have used three different security statements:
Authenticated(A,B), stating that B is sure of the identity of A;
conf(X), stating that the data X cannot be deduced (also called
confidentiality); and NRO(A,X), or non-repudiation of origin,
which provides an evidence that action X (the evidence) must
have been performed by A. These statements have a formal
description [8,9] which is used to analyse them.

The message exchange flow is described using the standard
MSC and HMSC facilities. MSC references are used to achieve
reusability. We have specified a set of standard protocols in
SRSL that can be easily reused in different contexts, and
combined them together to describe more complex protocols
using their MSC references.

A message consists of an identification name (either a text
string describing the meaning of the message, or a simple
counter sequence), and message parameters defining the
message data type format.

Some cryptographic operations can be applied to messages:
Concatenate (“,”) for data composition; Cipher
(“{<plaintext>}”<key>) to cipher data; Hash (“<hash-
function>(<data>)”), the result of a one way algorithm; and
Sign (“<plaintext>{hash(<plaintext>)} <Public_key>’ ”), to
get a hash message signed with the signer’s private key.
Further cryptographic functions can be defined if required.

Figure 2. BNF syntax of the protocol elements and the security analysis
strategy

In addition, the MSC expressions constructed using the
inline MSC operators alt, par, loop, opt and exc can also be
used.

The keyword alt denotes alternative executions of several
MSCs. Only one of the alternatives is applicable in an
instantiation of the actual sequence. The par operator denotes
the parallel execution of several MSCs. All events within the
MSCs involved are executed, with the sole restriction that the
event order within each MSC must be preserved. An MSC
reference with a loop construct is used for iterations and can
have several forms. The most general construct, loop<n,m>,
where n and m are natural numbers, denotes iteration at least n
and at most m times. The opt construct denotes a unary
operator. It is interpreted in the same way as an alt operation
where the second operand is an empty MSC. An MSC
reference, where the text starts with exc followed by the name
of an MSC, indicates that the MSC can be aborted at the
position of the MSC reference symbol, and can continue
instead with the referenced MSC.

IV. A CASE STUDY: ON-LINE CONTRACTING PROCESS

We have applied our methodology to a system currently
under development by one of the user’s partners in the
CASENET project [1]. The company developing a virtual
enterprise business scenario implementing on-line contracting

processes by integration of Trusted Third Party services
(TTPs), such as an existing electronic notary system, into a
web-based multi-users services platform. The current on-line
contracting process is rather complex and covers different
tasks such as contract creation, negotiation, signing and final
archiving.

We focus first on the contract signing process (contract
signing management and notarisation process control). This
procedure is part of the business-to-business scenario for
setting up a virtual enterprise platform integrating technology
components such as e-contracting, e-notary and role based
authorization engine.

This section describes the existing electronic notary process
within a current e-business scenario. The central core of this
set-up is the MESA platform. MESA provides web-based user
interfaces and role based control mechanisms for accessing
functions made available by the TTPs.

The following diagram (figure 3) describes the contract
signing process as it is implemented by an e-Notary reference
application and used within the company scenario. A user
accessing a web-based user interface provided by the MESA
platform triggers the contract signing process within this
business scenario manually:

Figure 3. Contract signing process

In the sequel we describe the contract signing process,
including both the security requirements and the relationships
among the users, the MESA platform, and the e-notary
service.

Our methodology has been used to examine this process in
terms of communication security issues. The intended goals
are to validate the model and evaluate both the current
reference implementation and a proposed extension to an
agent-based scenario for the reference implementation.

This implementation is being used within the current
business scenario. However, the current client/server
implementation, based on traditional public-key cryptographic
technology, has inherent problems in terms of flexibility and
scalability. While the reference scenario requires a certain
infrastructure, being compliant to the European directives
concerning digital signatures, to alternative public-key
technologies and to certificate infrastructures, might be more
suitable when adopting the e-notary process to other business

Security_information ::= definition_section sSecurity_service_section

Defintion_section ::= Definition var_definition knowledge_section

var_definition ::= <varlist> : Agent ;
 | <varlist> : Data ;
 | <varlist> : Random ;
 | <varlist> : Timestamp ;
 | <varlist> : Sequence ;
 | <varlist> : Public_key ;
 | <varlist> : Symmetric_key ;
 | <varlist> : Shared_key ;
 | <varlist> : Session_key ;

Knowledge_section ::= Knowledge <listagent_id> : <varlistasig> ;

Security_service_section ::= [intruder_strategy] security_property

intruder_strategy ::= Session instances [<var>=<value>] ;
 | intruder_knowledge [<initial_knowledge>];
 | intruder [redirect | , impersonate | , eavesdrop] ;
security_property ::= Security_service <security_service_list> ;

security_service_list ::= authenticated (<agent> <agent>)
 | conf (<data>)

 | NRO (<agent> <data>)

scenarios (giving different context of actors, content, legal
requirements and liability issues).

In fact changing the context of a recent e-Notary
deployment scenario and identification of implications in
terms of security is the most interesting challenge.

We should note that what we have specified here is an
already implemented system, i.e. a legacy system. Therefore,
our task has been to describe the behaviour of the application
in order to analyse and improve the current implementation.
We started by emphasising for the developers the usefulness
of specifying a system with the special aim of clarifying the
different scenarios in order to understand them better and to
avoid ambiguities.

The system is divided into three parts: the contract creation
process, the signing process, and the notarisation process.
These are represented in HMSC combining MSC references.
Each MSC reference is described by a diagram in a lower
abstraction level.

A representative part of the specification is the
create_contract scenario (see Figure 4).

CL MESA

Definition

CL,MESA: Agent;
contract, teplate_ID: Text;
session_ID: Text;
list_of_signers: Text;

httpskey : SESSION_KEY;

Security service
conf(contract);
conf(session_ID);
conf(template_ID);
conf(template);
conf(list_of_signers);

negotiation

1

1

1

1

1

1 alt

created_contract

Created_contract

client_authenticated

MSC create_contract

choose_signers

store_template_localy

choose_template
show_list_of_templates

confirm Confirm_data

list_of_signers
({session_ID,list_of_signers}httpskey)

show_list_of_signers list_of_signers
({list_of_signers]httpskey)

contract
({sesion_ID,contract}httpskey)

upload_contract

template

({template}httpskey)

template_ID
({session_ID,template_ID}httpskey)

create_contract_from_template

list_of_templates
({listtemplates}httpskey)

ask_for_list_of_templates
({session_ID}httpskey)

{confirm_data}httpskey

conf(confirm_data);

confirm_data: Text;

Figure 4. SRSL create_contract security scenario

The contract leader (CL) triggers the contract creation process.
Previously, the contract leader and the MESA platform had to

be authenticated, and a HTTPS session key exchanged. This is
represented by the initial state “client_authenticated”. The
scenario is divided into four independent alternatives (alt-
operator). In the third sub-scenario we use the task MSC
operator to express the possibility of an external negotiation
agreement, which is not part of our system. The fourth sub-
scenario ends the process by accepting the uploaded contract
and starting the next scenario in the state created_contract.

e_notary Signer

Definitions
 Signer,e_notary : Agent;
 contract_ID: Data;

Security service

1

1 loop

wait_for_contract_signing

signing

MSC contract_signing

request_for_contract_signing

contract_ID

Figure 5. SRSL contract_signing security scenario

The developers in the company considered this
methodology very useful for their purposes, especially with
regard to the specification of the contract signing process (see
figure 5). The notification was initially implemented by letting
the E-notary service send an e-mail to each signer. This
constitutes however an unreliable procedure with no security
guarantees. When this fact had been drawn to their attention,
the developers decided to modify the system in order to
provide for security services, such as signing of the e-mail by
the e-notary service to guarantee non-repudiation (see Figure
6).

The developers considered this approach easy to learn.
They believed that it had been of great help for understanding
the implementation, and for providing a method to improve
the application with regard to the required security services
and mechanisms.

V. CONCLUSIONS

We have presented a new specification method for
describing and evaluating security protocols. Security
protocols are specified in SRSL, which can then be translated
into a working SDL system. Attacks are implemented by SDL
processes that specify the intruder’s behaviour and observer
processes that check security properties. One of the benefits of
our approach is that protocol specifications are described
independently from the analysis procedures, so they can be re-
used in other environments as well.

In order to illustrate the methodology, we have shown an
application, consisting of an electronic notary process scenario,
whose developers wanted to validate and improve.

e_notary Signer

Definitions

 Signer,e_notary : Agent;
 contract_ID: Data;
Security service

1

1 loop

wait_for_contract_signing

signing

MSC contract_sign_NRO

contract_ID_signed
contract_ID

NRO(e-notary,contract_ID)

(contract_ID,{hash(contract_ID)}Pken’)

 PKen: Public_key;;

Figure 6. SRSL contract_signing security scenario with non-repudiation of
origin requirement

Furthermore, we have described how this e-Notary process
can be inserted into a different scenario, given different input
parameters. In this way, we were able to offer a framework
within which it became possible to define and to evaluate
different deployment options for rolling out the security
services. Finally, we note the fact that the solutions proposed
were very well received by the developers, who considered
them easy to learn and to apply.

Currently we are extending SRSL with the aim of enabling
the specification of more complex protocols and the analysis of
further properties. We are considering to use MSC-2000
features for specification purposes. Furthermore, we are
developing a framework for defining protocol attacks in the
Internet environment for purposes of testing.

REFERENCES

[1] CASENET V Framework Programme Research Project.
http://www.casenet-eu.org/

[2] D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT-29:198-208,
1983.

[3] ITU-T Recommendation Z.100 (11/99). Specification and
Description Language (SDL), Geneva, 1999.

[4] ITU-T, Recommendation Z.120. Message Sequence Charts
(MSC). Geneva, 1996.

[5] ITU-T, Recommendation Z.120 (11/99). Message Sequence
Charts (MSC). Geneva,1999.

[6] CCITT Recommendation X.800. Security Architecture for Open
Systems Interconnection for CCITT Applications. 1991.

[7] ITU-T Recommendation X.810 (ISO/IEC 10181-1). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems – Overview. 1995.

[8] ITU-T Recommendation X.811 (ISO/IEC 10181-2). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems – Authentication. 1995.

[9] ITU-T Recommendation X.812 (ISO/IEC 10181-3). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems -- Access Control. 1995.

[10] ITU-T Recommendation X.813 (ISO/IEC 10181-4). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems -- Non-Repudiation. 1995.

[11] ITU-T Recommendation X.814 (ISO/IEC 10181-5). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems – Confidentiality. 1995.

[12] ITU-T Recommendation X.815 (ISO/IEC 10181-6). Information
Technology -- Open Systems Interconnection -- Security
Frameworks for Open Systems – Integrity.1995.

[13] G. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, 1991.

[14] J. López, J. J. Ortega and J. M. Troya. Protocol Engineering
Applied to Formal Analysis of Security Systems. Infrasec’02,
LNCS 2437, Bristol, UK, October 2002.

[15] J. López, J.J. Ortega and J. M. Troya. Verification of
authentication protocols using SDL-Method. Workshop of
Information Security, Ciudad-Real- SPAIN, April 2002.

[16] C. Meadows. Open issues in formal methods for cryptographic
protocol analysis. Proceedings of DISCEX 2000,pages 237-
250. IEEE Comp. Society Press, 2000.

[17] A. Menezes, P.C. Van Oorschot, S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[18] P. Ryan and Scheneider. The Modelling and Analysis of
Security Protocols: the CSP Approach. Addison-Wesley, 2001.

