F. Paci, C. Fernandez-Gago, and F. Moyano, “Detecting Insider Threats: a Trust-Aware Framework”, 8th International Conference on Availability,
Reliability and Security, pp. 121-130, 2013.

http://doi.org/10.1109/ARES.2013.22

NICS Lab. Publications: https://www.nics.uma.es/publications

Detecting Insider Threats: a Trust-Aware
Framework

Francisco Moyano, Carmen Fernandez-Gago
Network, Information and Computer Security Lab
University of Malaga, 29071 Malaga, Spain
{moyano,mcgago} @lcc.uma.es

Federica Paci
University of Trento, Italy
paci @disi.unitn.it

September 20, 2013

Abstract

The number of insider threats hitting organizations and big enterprises is rapidly
growing. Insider threats occur when trusted employees misuse their permissions
on organizational assets. Since insider threats know the organization and its pro-
cesses, very often they end up undetected. Therefore, there is a pressing need for
organizations to adopt preventive mechanisms to defend against insider threats.

In this paper, we propose a framework for insiders identification during the
early requirement analysis of organizational settings and of its IT systems. The
framework supports security engineers in the detection of insider threats and in
the prioritization of them based on the risk they represent to the organization. To
enable the automatic detection of insider threats, we extend the SI* requirement
modeling language with an asset model and a trust model. The asset model allows
associating security properties and sensitivity levels to assets. The trust model
allows specifying the trust level that a user places in another user with respect to a
given permission on an asset. The insider threats identification leverages the trust
levels associated with the permissions assigned to users, as well as the sensitivity
of the assets to which access is granted. We illustrate the approach based on a
patient monitoring scenario.

1 Introduction

As reported by the 2011 CyberSecurity Watch Survey, 21% of cyber crimes were com-
mitted by insiders [6]. However, the 46% of the respondents thought that damage
caused by insider attacks was more severe than damage from outsider attacks. In fact,
insider attacks can cause significant damage to the affected organizations e.g loss of




money, loss of reputation, or loss of customers, among others. As defined by CERT
[17], an insider is “a current or former employee, contractor, or business partner who
has or had authorized access to an organization’s network, system, or data and inten-
tionally exceeded or misused that access in a manner that negatively affected the con-
fidentiality, integrity, or availability of the organization’s information or information
systems”. Insider attacks are more difficult to detect because they are trusted employ-
ees who have legitimate and often privileged access to critical or valuable assets, and
have knowledge of the organization and of its processes. Thus, to defend from insider
threats, preventive measures need to be taken that detect and assess the risks associate
with insiders rather than reactive measures after the attack has been conducted.

In this paper, we present an approach to assist security engineers in the detection
of insider threats during the early security requirements analysis phase of a socio-
technical system development life cycle. Our approch is complementary to other
threats identification approaches that rely on the analyst level of expertise such as risk
assessment. With our approach, the security engineer can identify automatically the
insider threats that exist in a given organization and permission setting and assess the
associated risks. The approach consists in first modeling in the SI* requirements mod-
eling language [12] the system stakeholders, their goals, their assets, the security prop-
erties (e.g confidentiality, integrity, availability) that stakeholders want to hold for their
assets, the permissions that the stakeholders have on assets, and delegation and trust of
permissions relationships among them. Trust of permission relationships represent the
belief of the grantor of a permission on an asset that the grantee will not misuse it: an
agent can be either trusted with a permission or distrusted. The level of trust associated
with an agent with respect to a granted permission is crucial to assess the risk of the
agent being an insider threat: the lower the level of trust associated with a permission
is, the higher is the likelihood that the agent will misuse the permission.

To support the automatic detection of insider threats, we extend the SI* require-
ments modelling language proposed in [2]] with an assetr and frust model. The asset
model associates with assets a sensitivity value that represent how valuable the asset is
for the owner. The trust model associates different levels of trust (e.g. high, medium
and low trust) with a permission granted to an agent rather than a single binary value
(trusted, not trusted) as currently supported by the SI* language. Based on the sensi-
tivity and trust levels, we define a set of rules to automatically identify insider threats
to an asset and prioritize them based on the risk associated with the threat. The risk
associated with the insider threat is given by the likelihood that the threat occurs that is
quantified by the trust level associated with the permission granted to the insider agent,
and the cost of the permission being misused that is quantified by the sensitivity of the
asset being harmed.

The rest of the paper is organized as follows. Section [2]introduces a running ex-
ample taken from the healthcare domain. We introduce the SI* framework and its
extensions proposed in [2]] in Section [3] We present the asset and the trust model in
Section [4] and the process to identify and prioritize insider threats in Section [5] We
discuss the related work in Section[6land outline future work in Section



2 Running Example - Patient Monitoring

To illustrate our framework, we use a patient monitoring scenario from the eHealth
case study proposed in the NESSoS European project [ﬂ The scenario involves five
main actors. Patient is monitored by a smart T-shirt which measures medical data
(e.g., heartbeat rate, blood pressure, etc.) and transfers them to the Hospital’s computer
system. When the patient’s condition is abnormal, the doctor makes a diagnosis and
produces a prescription. The patient receives his prescription and requests the drug
delivery service to the pharmacy. The Hospital provides medical services to patients.
The hospital monitors patients’ health and manages patients’ data, which are stored
in the hospital’s computer. When the patient has some problems, the hospital assigns
a doctor to diagnose the patient. The Pharmacy is responsible for managing drugs
and provide them to the patients. All the information about drugs is stored in the
pharmacy’s computer. The Pharmacist works for the pharmacy and is responsible to
provide drugs to be delivered according to the prescription received from the patient.
The prescription information is stored in the pharmacy’s computer. Finally, the Drug
manager works for the pharmacy and is responsible to manage the drugs. All the
drugs’ information is also stored in the pharmacy’s computer.

3 The SI* Modeling Framework

The SI* modeling language [12] has been proposed to capture security and functional
requirements of socio-technical systems. SI* is founded on the concepts of agent,
role, service, and relations such as AND/OR decomposition and means-end. An agent
is an active entity with concrete manifestations and is used to model humans as well
as software agents and organizations. A role is the abstract characterization of the
behavior of an active entity within some context. The term service is used to denote a
goal, a task and a resource. A goal captures a strategic interest that is intended to be
fulfilled. A task represents a particular course of actions that produces a desired effect.
It can be executed to satisfy a goal. A resource is an artifact produced/consumed by
a goal or a task. AND/OR decomposition is used to refine a goal, while means-end
identifies goals that provide means for achieving another goal or resources produced or
consumed by a goal/task.

SI* also captures social relationships (e.g., delegation and trust) for defining the
entitlements, capabilities and objectives of actors. Originally, a delegation marks a
formal passage of responsibility (delegation execution) or authority (delegation per-
mission) from an actor (delegator) to the actor receiving the responsibility/authority
(delegatee) to achieve a goal or to provide a resource. Trust is a relation between two
actors representing the expectation of one actor (frustor) about the capabilities of the
other (trustee) — trust execution, and about the behavior of the trustee with respect to
the given permission — trust permission.

In order to support the identification of threats at organizational level, in [2]] ST*
has been extended to represent different types of actors’ permissions on resources and
different types of relationships between resources. Goals and resources are considered

Thttp://www.nessos-project.eu/



Table 1: Permissions on resource

(Possible)
Permission Description Affected
Type P Sec.
Property
Actor only has the per-
Access o -
mission to access/read- Confidentialit;
(low-level)
/use the resource.
Modp‘y Actor can change the .
(medium- Integrity
content of the resource.
level)
Actor has the permission
to modify the resource,

Manage delegate permissions to s
(high-level) other actors and modify Availability
permissions to other ac-

tors.

as assets that need to be protected because they bring value to organizations. In order to
specify how an asset needs to be protected, we use the concept of security requirement
defining a specific security property, such as confidentiality, integrity, and availability.
The permission type granted on a resource determines the type of actions an actor
can perform on a resource (see Table[I). Thus, a permission type might yield to the
violation of a specific security property if the actor misuses the actions granted by a
permission type. Moreover, a given permission granted on a resource can be extended
to other resources that are related to the resource by the relations reported in Table 2]

Table 2: Relationships between resources

Relationship Description
store_in captures a situation where an informational resource is stored
in a physical resource
part_of indicates that a resource consists of other resources.
require denotes that a resource might require another resource to function.

In order to allow the analysis of SI* models, the semantics of SI* has been de-
fined in the Answer Set Programming (ASP for short) paradigm which is a variant of
Datalog with negation as failure and disjunction. This paradigm supports specifica-
tions expressed in terms of facts and Horn clauses, which are evaluated using the stable
model semantics. Here, SI* models are encoded as sets of facts. Rules (or axioms) are
Horn clauses that define the semantics of SI* concepts. To support the formalization in
ASP, the DLV inference engine is used. Table[3|summarizes the predicates to formalize
an SI* model in ASP.

Example 1. Figure|l| shows the SI* model for the Patient Monitoring scenario. The
model consists of five roles: the Hospital, the Patient, the Pharmacy, the Pharma-
cist and the Drug Manager. Patient (Role) can be played by three agents Bob, Kate,
and Jane. The Patient (Owns) the resources Patient data and Prescription. It del-
egates to the Hospital the manage permission on Patient data, and it delegates the
access permission on Prescription to the Pharmacy. The Pharmacy has the inten-
tion (Request) to fulfill the goal Sell drug which is (AND-decomposed) into subgoals
Manage drug and Provide drug: the fulfillment of Manage drug is delegated to the



Table 3: Predicates for ASP SI* formalization

Goal model

service(Service:s)

goal(Goal:g)

resource(Resource:r)

actor(Actor:x)

agent(Agent:a)

role(Role:p)

play(Agent:a,Role:p)

provide(Actor:a, Goal:g)

own(Actor:a, Goal:g)

own(Actor:a, Resource:r)

subgoal(Goal g1, Goal:g)
means_end(Resource:r, Goal:g)
means.-end(Goal:g, Resource:r)

Resource model

stored_in(Resource:r, Resource:rl)
part_of(Resource:r, Resource:r1)
require(Resource:r, Resource:rl)

Permission model

permission(Actor:a, Resource:r, PType:pt)
del_perm(Actor:a, Actor:al, Resource:r, PType:pt)
trust_ perm(Actor:a, Actor:al, Resource:r)
Security requirements and Threats model
secure_req(Resource:r, SProperty:sp)
secure_req(Goal:g, SProperty:sp, Resource:r)
threat(Actor:a, Resource:r, SProperty:sp)
threat(Actor:a, Goal:g, SProperty:sp, Resource:r)

Availability 1

—_—T
N

onidentiality
Prescription

High o storein
require "%
Smart T-shirt

Figure 1: Example of SI* model - Patient Monitoring

Legend: The circles denote roles or agents, the ovals denote goals, while the rectangles represent resources. Dp_a, and
Dp_ma represent delegation of permission relation where the permission type is access and manage respectively. Simi-
larly,Tp-a, and Tp_ma represent trust of permission relation where the permission type is access and manage. Services
that are considered assets are labeled with the security property that should be satisfied and their sensitivity level.

Drug Manager while the fulfillment of Provide drug is delegated to the Pharmacist.
The Pharmacy (Owns) the resource PComputer. It grants to Drug Manager the



manage permission on PComputer and the access permission on Prescription to
the Pharmacist. The Hospital (Role) has an intention (Request) to fulfill the goal
Provide medical service which is (AND-decomposed) into subgoals Monitor pa-
tient, Manage patient data, and Diagnose. Some goals can produce or consume
resources. For example, the goal Diagnose requires the resource Patient data and
produces the resource Prescription. The Hospital (Owns) the resource Smart T-shirt
and delegates to the Patient the manage permission on it.

4 SI* extensions

In this section we present the two main extensions that we propose to SI*: asset model
and trust model.

4.1 Asset Model

We consider an asset a service for which the owner specifies the sensitivity and a secu-
rity property that expresses the need of protecting the service. We introduce a predicate
sec_req(s,sp,p) to specify the security property sp that should be preserved for a ser-
vice s owned by a role p. Similarly, to denote that that a security property sp should be
preserved for a specific instance of a service s, service_instance(s, a, p), we introduce
the predicate sec_req(service_instance(s, a, p),sp,a,p). We also introduce the predicate
sensitivity(s,sl,p) to indicate that a service s owned by role p has sensitivity level s/, and
the predicate sensitivity_instance(service_instance(s, a, p),sl,a,p) to associate a sensi-
tivity level s/ to an instance of the service s owned by the agent a playing the role p.
To denote at organizational level that a service is an asset, we introduce the predicate
asset(s, p) where s is a service and p is the role who owns it. Instead, the predicate
asset_instance(service_instance(s, a, p),a,p) holds when an instance of a service s is an
asset.

Table 4: Formalization of SI* extensions

Asset model

sec_req(Service:s, SProperty:sp,Role:p)

sec_req- instance(Servicelnstance:si, SProperty:sp,Agent:a,Role:p)
asset(Service:s, Role:p)

asset_instance(Servicelnstance:si, Agent:a,Role:p)
sensitivity(Service:s, SLevel:sl, Role:p)
sensitivity_instance(Servicelnstance:si, SLevel:sl, Agent:a,Role:p)
asset(S,P) <— sec_req(S,SP,P) A sensitivity(S, SL, P)

Trust model

trust_perm(Role:p, Role:p1, Service:s, PType:pt)

trust_perm._ instance(Agent:a, Agent:al, Servicelnstance:si, PType:pt, TLevel:tl)

In our model we distinguish between two types of assets: direct and indirect as-
sets. Direct assets are services for which a security property and a sensitivity level
are explicitly modeled in the SI* model, while indirect assets are services for which
the security property and the sensitivity level is determined based on the relations with
other services. The identification of indirect assets is based on a set of rules (reported
in Table[5)) that consider the relations among resources - stored_in, part_of and require



Table 5: Axioms for identifying indirect assets

Indirect Assets Identification

S sec_req(R, SP, P) « store_in(R1, R)A

sec_req(R1,SP, P)

sec-req(R, integrity, P)

S2 store_in(R1, R)

sec_req(R1, confidentiality, P)

sec_.req(R1,SP, P) “—

part_of(R1, R) A sec.req(R, SP, P)
sec-req(R, integrity, P)

S4 require(R1, R)

(

(

> 1

S3

> 7T

sec_req(R1,integrity, P)
sec_req(R, availability, P)
S5 require(R1, R)
sec_req(R1, availability, P)
sec_-req(G, SP, R, P)
S7 secure_req(R, SP, P)
means_end(G, R)
sec-req(G, confidentiality, R, P)  «
S8 secure_req(R, con fidentiality, P) A
means_end(R, G)
sec-req(G1,SP, R, P)
subgoal(G1, G) N sec_req(G,SP, R, P
sensitivity(R, SL, P)
S10  store_in(R1, R)
sensitivity(R1, SL, P)
sensitivity(R, SL, P)
S11  part.of(R1, R)
sensitivity(R1, SL, P)
sensitivity(R, SL, P)
S12 require(R1, R)
sensitivity(R1, SL, P)
sensitivity(G, SL, P)
S13  means_end(G, R1)
sensitivity(R1, SL, P)

> 7T

> 1

4

S9

—

> 7T

> 7T

> 1

> T

- and the relationship means_end among the resources and the goals that requires the
resources to be fulfilled. We assume that if an asset is related to a service by one of
these relations, the same security property should hold for the asset and service (ax-
ioms S1-59) and that the two assets should have the same sensitivity level (axioms
S510-S513). If the direct asset is related to another direct asset only the security property
is propagated to the other asset.

Example 2. In Figure [l| Prescription is an medium sensitive asset for the Patient,
who requires that Confidentiality of Prescription is preserved. Since Prescription
is stored-in PComputer, also the Confidentiality of PComputer needs to be pre-
served. PComputer is an indirect asset which has the same sensitivity of Prescription.

4.2 Trust Model

The SI* trust model is very simple since it supports only binary trust values: either
an agent is trusted or is distrusted for a given permission on a resource. However, in
real scenarios trust is not a binary value but an agent can be assigned different levels of
trust. The different values of trust depend very much on the used definition, being the
latter very much dependent on the context. There is no a standard definition of trust.
However, usually, a trust relationship holds between two agents: a trustor (the one



who places trust) and a trustee (the one performing a given action and to who(m) the
trustor places trust in). In this paper, we define trust as the expectation that the trustor
places on the trustee on a specific context for performing a specific task. The context
in our case is a permission that is granted to the trustee on a given asset. The trust
level is important to determine the likelihood that the trustee will misuse the granted
permission to harm the asset.

Our intention is to extend SI* with a trust model that associates a trust level with a
trust of permission relation between two agents. The trust levels are then translated into
trust labels that are used to define insider threats identification rules, which determine if
an agent misuses a granted permission on an asset and the risk associated to the threat.

First, we assume that trust levels can be represented in two forms: labels - e.g. Very
Good, Good, Neutral, Bad, Very Bad- and numbers in the interval [0, 1], as in the trust
model proposed in [7]. Then, the second important step to define a trust model for SI*
is to set a way to derive trust values. The assignment of trust values can be done in a
discrete way by using for example 0 for representing non-trust at all; 1 for representing
total trust and 0.5 for representing an intermediate value. The way of calculating trust
can be made in a more accurate way by using some kind of mathematical or statistical
functions. For our purpose, the way trust values are calculated is not very relevant.
Jgsang provides a comprehensive review on trust models [8]. We assume that some
trust values are already assigned to trust of permission relationships between agents
in the SI* model and that these values are leveraged by the organization stakeholders
in order to compute trust values for pairs of agents for which such relationships are
not explicitly modelled. Thus, to determine the trust level that an agent A places on
another agent B regarding how B will behave with respect to a granted permission,
we leverage the trust of permission relationships that other agents have with A and B.
Incorporating a trust model in ST* thus requires not only to extend trust of permission
relationships with trust values and permissions but also to add the following rules:

e Derivation rules - generate a trust value for agents A and B given the trust values
that other agents trusted by A have in B

e Resolution rules - resolve potential conflicts that may arise from applying the
derivation rules

o Transformation rules - specify how to translate trust values to trust labels.

We formally introduce these rules as follows.

4.2.1 Derivation and Resolution Rules

These rules aim to exploit trust levels associated with trust of permission relationships
present in an SI* model in order to compute trust values for trust of permission re-
lationships not explicitly represented in the model. These rules are supported by the
concept of trust evaluation. This concept and those of trust statement, and linear and
consensus functions are introduced in [1].

Definition 1 (Trust Evaluation). A trust evaluation is a function F : E x E x C —
T D, where E is a set of agents, C' is a set representing the context in which the trust
evaluation can take place, and T'D is the trust domain.



Note that the definition is generic and applicable to different settings and for differ-
ent purposes. In this paper, the output of this function is the trust value in the extended
trust_perm relationship that measures quantitatively the expectation of an agent about
the behaviour of another agent with respect to a given permission. In this work, we in-
stantiate the context C' as the permission granted to the trustee on a given asset. Before
we introduce these extensions, trust_perm relation did not reflect this quantitative mea-
surement, since it was an atomic relationship: either it was present in the SI* model or
not.

Once the requirement engineer has designed the SI* model of the socio-technical
system and its instances, there might appear two types of relationships configurations.
Depending on the configuration that we have there might be two different types of trust
evaluation functions. We may use a linear trust function, or a consensus trust function.
Yet before providing their formal definitions, we need to define what a trust statement
is.

Definition 2 (Trust Statement). A trust statement is an element
(Trustor, Trustee, Context, Value) € E x E x C x T D, where E is the set of all
entities in the system; C'is a set representing a context; and T D is a Trust Domain.

Trust of permission relationships are a particular instance of trust statements where
Context is the permission granted to the trustee on an asset instance and Value is
the trust level placed by the trustor in the trustee for the permission. To represent
trust statements we have introduced the predicate trust_perm_instance(A, Al,asset_
instance (service_instance (S,A,P)), PT, TL). Trust statements can form trust chains.
Linear and consensus trust functions evaluate trust over these chains, as defined next.

Definition 3 (Linear Trust Function). A linear trust function is a function,
n
———
f: UZOZQ TD x ---xTD — TD, that calculates the trust level associated to a

path or chain of trust statements, such that f(v1,...,v,) = 0if, and only if, v; =
Oforanyi € {1,...,n}, where v; € TD and TD is a trust domain.

Definition 4 (Consensus Trust Function). A consensus trust function is used to calcu-
late the trust level associated to a set of paths or chains of trust statements. It is defined
n

—N—
as, g: UZOZQ TD x ---xTD — TD, where T'D is a trust domain and
1og(z1,y 0y 2ic1yZiy Zigls e ooy 2n) = G215 e ooy Zic 1y Zid 1y ooy 2n) i 2i =0
2. g(z) ==z

As a consequence of applying these functions to an SI* model, an agent might
end up holding several trust of permission relations with a given agent. However, it
would be optimal if an agent only holds one value for any other agent of the system.
Resolution functions could solve this.

Definition 5 (Trust Resolution Function). A trust resolution function is a function,
n

—N—
f:UoTD x -+ x TD — TD, such that f(vq,...,v,) < maz(vi,...,v,) and
for,.. . v,) = min(vy, ..., vy), where v; € TD and T'D is a trust domain.



+ 2= +

Build SI* SI* Model | Identify Critical | SI* Model ot Lstorn e S Mode! I,I ‘S‘E"“a‘e”‘e Si* Model | Identifying @ %
Model Formalization Assets Formalization Assets lodel  permissions Fo,mahzam" Insider Agents
Assets Formalization Model " \
in ASP in ASP | in List of
— in ASP 4\\
C’k’\) l;:b =) Prioritized
v Insider Threats

Figure 2: Process to Identify Insider Threats

Basically, given a set of trust values, the resolution function produces one unique
representative trust value that is upper bounded by the maximum and lower bounded
by the minimum of the original trust values. Derivation and resolution rules rely on
functions to compute the trust values. For this purpose, different functions could be
used (e.g. maximum, minimum, arithmetic or geometric means).

4.2.2 Transformation Rules

Once we obtain the final numeric values for every trust of permission relationship,
transformation rules must be used in order to translate these values, which are in an
interval [a, b] ([0, 1] is the chosen one in this case) into a label in a given set of labels
that forms a trust scale [7]].

Definition 6 (Trust Scale). A trust scale for a given context ¢ € C' is composed of
an ordered set L° of trust labels L, where i € I, that represent discrete trust mean-
ings; and a trust evaluation that is an increasing function, f : L¢ — (0,1], such that
f(L5, ) = 1.We denote x5 := f(L{) and x§ := 0.

Example 3. Let us consider the SI* model illustrated in Figure [I| that shows the pa-
tient monitoring scenario. Let us suppose that the agent Bob (playing the Patient
role) wants to determine the level of trust with which he can grant the access per-
mission on its asset Prescription to Ellen (playing the Drug Manager role). Since
Bob has no direct trust relationship with Ellen we need to evaluate the trust value
that Bob places in Ellen based on the following trust chain: trust_ perm_ instance
(Bob, Pharmacy Saint Claire, asset_ instance (service_ instance (Prescription, Bob, Pa-
tient), Bob, Patient), access, very good) ; trust_perm_instance(Pharmacy Saint Claire,
Ellen,asset_instance(service_instance(Prescription,Bob,Patient), Bob, Patient), access,
good). Note that Ellen has access to the instance of Prescription owned by Bob be-
cause it is stored in the instance of PComputer owned by Pharmacy Saint Claire on
which Ellen has been granted manage permission with good trust level and having
the manage implies the access permission. Let us assume that the trust scale and the
trust evaluation function are defined as follows:

o Very good — 1
e Good — 0.8
e Neutral — 0.6

e Bad — 0.4

10



e Very Bad — 0.2

Let us also assume that in order to compute the trust value that Bob can place in Ellen
for the access permission we use the product as consensus function. Thus, the trust
level for Ellen is 1 * 0.8 = 0.8 which corresponds to label Good. Thus, we can add
to the SI* model formalization the following trust of permission relationship between
Bob and Ellen: trust_perm_instance (Bob, Ellen, asset_ instance( service_ instance(
Prescription, Bob, Patient), Bob, Patient), access, good).

5 Identifying Potential Threats

In this section we present the steps to follow for the process for identifying insider
threats (see Figure 2)).

5.1 Build SI* Model

This step aims to create an SI* model, which captures all the stakeholders of the system
modeled as agents, the role that they play inside the organization, their goals, tasks and
resources, the relations between resources, and the delegation and trust relationships
among the roles. To enable the automatic detection of insider threats, we need to
translate the graphical SI* model into formal specifications in ASP (see Section3).

Example 4. The SI* model in Figurel[l|is produced during this step. A snapshot of the
formalization of the model in ASP is reported in Table[6]

5.2 Identify Critical Assets

This step aims to identify those services in the SI* model that are assets. First, direct
assets are identified by labelling the critical services with the security property that the
role owning the service wants to hold for it, and with the service’s sensitivity level (see
Section[d). Then, the indirect assets are determined based on the set of rules in Table

Example 5. In Figure|l|there are three direct assets owned by the Patient role: Pre-
scription, Patient Data, and Monitoring Data. The Patient requires confidentiality
to hold for Prescription, availability should hold for Patient Data, while integrity
should be satisfied for Monitoring Data. Smart T-Shirt. HComputer, PComputer,
Diagnose, Manage Patient data, Monitor Patient, and Provide Drug are indirect
assets. For example, PComputer is an indirect asset because the asset Prescription
is stored in PComputer and thus the confidentiality of PComputer needs to be pre-
served. Similarly, the goal Diagnose is an indirect asset because it is linked to the
asset Prescription by a means_end relation, and thus also the confidentiality of the
goal needs to hold.

11



Table 6: ASP formalization for SI* model

role(patient)

role(hospital)

goal(provide_ medical. service)
goal(monitor_ patient)
goal(diagnose)

resource(monitoring.- data)
resource(patient. data)
resource(prescription)
resource(computer)
resource(smart_ t_ shirt)

means. end(diagnose,prescription)
resource(smart_t_shirt)

del_ perm_manage(smart_t_shirt,patient)
del_perm_manage(hospital,smart_t_shirt)
own(hospital,smart_t_shirt)

del_ perm_-manage(patient_ data,hospital)
own(patient,patient_data)

role(pharmacy)

own(pharmacy,pcomputer)
del_perm_manage(pcomputer,drug_manager)

del_perm_access(prescription,pharmacy)
own(patient,prescription)

del_ perm_access(pharmacy,prescription)
agent(kate)

agent(bob)

play(kate,patient)

play(bob,patient)

Table 7: ASP rules to instantiate the SI* model

Istantiating Assets

Al sec_req-instance(service_instance(S, A, P), SP, A, P) < sec_req(S, SP, P)\
service_instance(S, A, P) A\ instance(A, P)

A2 sensitivity-instance(service_instance(S, A, P),SL, A, P) < service_instance(S, A, P)\
instance(A, P) A sensitivity(S, SL, P)

SP, A, P) A sensitivity-instance(service_instance(S, A, P), SL, A, P)

A3 | asset_instance(service_instance(S, A, P), A, P) < sec-req-instance(service_instance(S, A, P),

Istantiating Per

A4 | permission_instance(A, service_instance(S, A, P) < permission(P, S, PT)
Ninstance(A, P) A service_instance(S, A, P)

5.3 Determine Permissions on Assets

This step determines the permissions that roles are granted on assets. The permissions
are assigned to roles based on a set of axioms that take into account if a role is the
owner of a resource and of the relations between resources - stored_in, part_of and
require. The axioms assume the owner of a resource has the highest permission on a
resource (i.e., manage) or that a role with the manage permission on a resource can
delegate any permission type on the resource to another actor. In addition, if a role
has a manage permission on an resource which stores another resource, s/he then has
the manage permission also on the stored resource. Last, if a role has a permission on
a resource, then s/he has the same permission on each subpart of the resource. For a

12



complete list of the axioms, we refer the reader to [2].

Example 6. The Patient has delegated the access permission to the Pharmacy on
Prescription, and thus the Pharmacy has the access permission on Prescription.
Moreover, the Pharmacy has the manage permission on PComputer and thus it
has also the manage permission on Drug Info and Prescription that are stored in
PComputer. The Pharmacist and the Drug Manager are granted by Pharmacy the
manage permission on the PComputer. In addition, the Pharmacist also gains ac-
cess permission on the Prescription from the Pharmacy. Since the Drug Manager
has manage permission on the PComputer and Prescription is stored in PCom-
puter,Drug Manager has manage permission on Prescription.

5.4 Instantiating the SI* model

This step instantiates the SI* organizational model. We only report the axioms to in-
stantiate the elements of the SI* model that are relevant for the insider threat identi-
fication. A complete list of the ASP rule to instantiate an SI* model can be found in
[21]]. In the following, we introduce the rules to instantiate assets, agents’ permissions
on assets and the trust of permission relations between agents.

5.4.1 Instantiate Assets

Each instance of an asset is identified with its sensitivity level. The identification is
based on the rules given in Table A1l states that if a security property holds for
a service at organizational level, this property should hold for each instance of that
service. A2 associates a sensitivity level to an asset instance: the asset instance has the
same sensitivity of the asset at organizational level. A3 determines if a service instance
is an asset: a service instance is an asset if there is a security property that holds for the
service instance and the service instance has sensitivity level.

Example 7. Prescription is an asset owned by the role Patient. The Patient role is
played by the agents Bob, Kate, Jane, thus each of them owns one of the following
instances of Prescription:

e asset._instance(service_instance(Prescription,Bob,Patient), Bob,Patient),
e asset_instance(service_instance(Prescription,Kate,Patient), Kate, Patient),

e asset_instance(service_instance(Prescription,Jane,Patient), Jane, Patient).

5.4.2 Instantiate Permissions on Assets

This steps identifies the permissions that agents have on assets. A4 states that an agent
playing a role inherits the permissions that the role is granted on assets.

Example 8. The Pharmacy role delegates the manage permission on PComputer
to role Drug Manager. Since the Pharmacy is played by the agent Pharmacy San
Raffaele, and the Drug Manager is played by agents Ellen and Mary, Ellen and
Mary are granted the manage permission on the instance of PComputer owned by
Pharmacy San Raffaele.

13



5.4.3 Instantiate Trust of Permissions relation

In this step the trust of permission relationship between agents owning assets and agents
having permissions on their assets are identified. This implies to determine the level
of trust that the owner places in the other agent for the granted permission: the trust
value can be already given or it can be computed based on a trust chain as described in
Section

Example 9. At organizational level the Pharmacy trusts the role Drug Manager with
the manage permission on Prescription. This relationship needs to be instantiated
for each instance of Prescription asset and each agent playing the Pharmacy and
Drug Manager roles. Let suppose that we want to instantiate the trust of permission
relationships for the Prescription instance owned by Bob - asset_instance(service_
instance(Prescription, Bob, Patient), Bob, Patient). Bob trusts good both Pharmacy
Saint Claire and Pharmacy San Raffaele with the access permission on asset_ instance
(service_ instance( Prescription, Bob, Patient), Bob, Patient). On their turn, Phar-
macy San Raffaele and Pharmacy Saint Claire places the following trust levels in
the agents Dr Alex and Dr Stefano for the access permission on asset_ instance(service_
instance ( Prescription, Bob, Patient, Bob, Patient)):

e trust_perm_instance(Pharmacy Saint Claire, Dr Stefano,asset_instance (service_instance
(Prescription, Bob, Patient), Bob, Patient), access, neutral)

e trust_perm_instance(Pharmacy San Raffarele, Dr Alex, asset_instance( service_
instance(Prescription,Bob, Patient), Bob, Patient), access, good)

The trust of permission relations between Bob and Dr Alex and Bob and Dr Stefano
can be computed as described in Example 3. As result of the computation the following
trust of permission relationships can be added to the ASP formalization of the SI*
model:

e trust_perm_instance(Bob, Dr Stefano, asset_instance(service._instance(Prescription,
Bob, Patient), Bob, Patient), access, neutral) and

e trust_perm_instance(Bob, Dr Alex, asset_instance(service_instance(Prescription,Bob,
Patient), Bob, Patient), access, good).
5.5 Detecting Insider Threats
We assume that an agent A is an insider for a given asset S when two conditions hold:

a) A is granted a permission PT on the asset S that is sufficient to violate the
security property associated with .S

b) The agent who owns the resource .S does not fully trust A with permission P7T".

We introduce a threat predicate to specify when an agent is an insider for a given
instance of an asset and the risk associated with the insider threat.

Typically, the risk associated with a threat is given by the probability that a threat
occurs and the severity of the threat. Here, we determine the level of risk associated

14



Sensitivity Levels

Very Low Medium | High Very High
Low
2
@ | VeryBad M H H H
]
= | Bad M M H H
(7]
Z | Neutral L M M H
Good L M M M
Very Good L L M M

Figure 3: Risk Levels

with the threat initiated by an agent A based on two dimensions: the sensitivity of the
asset S and the trust level with which A is granted the permission P7". The sensitivity
quantifies the cost of the threat by A, while the trust level quantifies the likelihood
that the threat occurs. Intuitively, higher is the sensitivity of the asset .S, higher is the
damage for the organization. Similarly, higher is the trust level, lower is the likelihood
that the agent will misuse the granted permission [4].

Figure[3]is an example of how the risk level of a threat can be determined based on
sensitivity and trust levels. The rows of the table represent the trust levels, while the
columns represent the sensitivity levels. Each entry of the matrix specifies the risk level
for a given combination of sensitivity and trust levels. The risk level can assume one of
the following values: Low, Moderate, High, Extreme. How trust and sensitivity relates
to each other depends on the organization’s policy and should not be fixed beforehand.

The identification of the insider threats and their risk level is based on a set of
axioms reported in Table[8] Due to the lack of space, we list only the axioms to detect
insider threats to assets’ confidentiality, integrity and availability with extreme risk
level. Axioms T'1.a - T'l.c identify insider threats to confidentiality: the insider has
access permission on the asset being harmed and the owner of the asset places very
bad, bad or neutral trust level in the insider for the granted permission. Axioms 72.a
- T'2.c allow to detect insider threats to integrity: in this case the insider needs to be
granted a modify permission on the asset and the owner places very bad, bad or neutral
trust level for the granted permission. Axioms 7'3.a - T'3.c identifies insider threats to
availability.

The modeling and the reasoning based on the above axioms are supported by the
SI* tool which is an Eclipse plug-in equipped with a DLV engine. The tool interface
allows to draw an SI* model which is automatically translated into ASP specification.
The tool also allows to input the rules for insider threat identification so that the prob-
lem of identifying insider threats is the same as checking a DLV program that formalize
the SI* model and the axioms.

Example 10. Let us assume we want to determine all the possible insiders for the

15



instance of Prescription asset owned by the Patient Bob. The reasoning reports the
following insiders:

o threat(Dr Stefano,asset_instance(service_instance(Prescription, Bob, Patient), Bob, Patient),
confidentiality, moderate)

o threat(Dr Alex,asset_instance(service_instance(Prescription, Bob, Patient), Bob, Patient),
confidentiality, moderate)

o threat(Ellen,asset_instance(service_instance(Prescription, Bob, Patient),Bob, Patient),
confidentiality, moderate)

e threat(Mary,asset_instance(service_instance(Prescription, Bob, Patient), Bob, Patient),

confidentiality, high)

e threat(Ellen,asset_instance(service_instance(Prescription, Bob, Patient),Bob, Patient),
availability, moderate) threat(Mary,asset_instance(service_instance(Prescription,
Bob, Patient),Bob, Patient), availability, high)

Dr Stefano and Dr Alex are two insiders which represent a moderate risk to the
confidentiality of Prescription instance owned by Bob because they have been granted
access permission on the asset instance and they are trusted good for such permission
by Bob. Ellen and Mary are insiders to both the confidentiality and the availability of
Prescription asset owned by Bob because the following conditions hold:

e the asset instance is stored in the instance of PComputer owned by the Phar-
macy Saint Claire and Pharmacy San Raffaele

e Pharmacy Saint Claire trusts good Ellen with the manage permission on the
instance of PComputer owned by the Pharmacy San Raffaele

e Pharmacy San Raffaele trusts bad Mary with the manage permission on the
instance of PComputer owned by the Pharmacy San Raffaele

e Ellen and Mary thus have the same permission on the Prescription asset owned
by the Patient Bob stored in the instances of PComputer owned by Pharmacy
Saint Claire and Pharmacy San Raffaele respectively

e having the manage permission on an asset implies to have also the access
permission on an asset

e Ellen and Mary are trusted Bob good and bad with the manage permission
on the instance of Prescription owned by Bob

e manage permission is sufficient to violate the availability of a given asset while
the access permission is sufficient to violate the confidentiality of an asset.

16



6 Related Work

Several proposals have attempted to include security analysis into the requirement anal-
ysis process. Among goal-oriented approaches, van Lamsweerde extends KAOS by in-
troducing the notions of obstacle [19] and anti-goal [18] in order to analyse the security
concerns of a system. KAOS obstacle captures an undesired state of affairs that might
harm safety goals (i.e., hazard) or threaten security goals (i.e., threat), while KAOS
anti-goal captures the intention of an attacker. The authors propose a formal frame-
work to identify the obstacles to a goal in a given domain properties and to generate
resolutions to those obstacles. Liu et al. [[L1] propose an extension of the i* frame-
work [20]] to identify attackers, and analyse vulnerabilities through actor’s dependency
links. In this framework, all actors are considered as potential attackers. Therefore,
their capabilities are analysed and possible damages caused by actors are assessed. In
Li et al. [10], the authors proposed a formal framework to support attacker analysis.
Similarly, Elahi et al. [S]] propose i* extensions to model and analyse the vulnerabili-
ties affecting systems requirements. MatuleviCius et al. [13]] extend the Secure Tropos
[L6] language to support modelling of security risks and their countermeasures. For
that purpose, the authors analyse the concepts and syntax of Secure Tropos and pro-
pose some extensions in order to fill the gap required to align this language with the
Information System Security Risk Management (ISSRM) model.

Our approach, unlike the previous approaches, supports an automatic reasoning to
identify possible insider threats based on the model formalization which can provide a
valuable input (i.e. list of prioritized threats) to these frameworks in order to perform
further risk assessment.

Other works focus on integrating risk analysis into the requirement analysis pro-
cess. SQUARE [14] and SREP [15] are two similar processes that support risk as-
sessment as an explicit step to identify security requirements. Asnar et al. [3] propose
a concrete methodology, namely the Goal-Risk framework, to analyse and model se-
curity problems. The methodology relies on SI* requirements modeling language to
capture stakeholders’ goals, risks that might threaten the goals, and countermeasures
required to mitigate the unacceptable risks. In [2], Asnar extended SI* with the possi-
bility of specifying permissions and relationships on resources. Based on these exten-
sions, they propose a reasoning to identify threats to resources that occur because roles
representing classes of stakeholders of a system misuse their privileges. In our work,
we extend this work by adding an asset model and a trust model to identify agents -
instances of stakeholders of the system - that may cause harm to organizational assets
and to prioritize them based on the risk for the organization.

Li et al. [9] propose a security analysis that verifies that a set of security prop-
erties like availability and safety are satisfied while delegating access to resources to
partially trusted principals. Similarly to us, they consider that delegating permissions
on resources to not fully trusted entities can be a source of threats.

17



7 Conclusion and Future Work

This paper proposes a framework to support security engineers in identifying insider
threats during the security requirements analysis phase of a socio-technical system de-
velopment life cycle. Our framework provides security engineers with a reasoning that
automatically produces a list of possible insiders for organizational assets and the risk
they may represent to the organization. The reasoning determines if an agent is an
insider for an asset and the risk he/she brings about, based on the sensitivity of the
asset, the security property specified for it, the permission assigned to the agent on the
asset, and the level of trust the asset owner places in the agent for the granted permis-
sion. Once the insider threat is identified, the organization is responsible for taking the
necessary countermeasures.

We are aware that our framework has some limitations. First, the validity of the
results of the reasoning strictly depends on the quality and completeness of the SI*
model, which in turn depends on the level of expertise of the requirements engineer.
Second, the visual notation of SI* might not scale well for complex application scenar-
i0s.

We are planning to evaluate the strengths and limitations of our framework by con-
ducting a controlled experiment where master students and professionals apply the
framework to a real industrial application scenario.

Acknowledgements

This work has been partially funded by the European Commission through the FP7
project NESSoS under grant agreement number 256980. The third author is funded by
the Spanish Ministry of Education through the National F.P.U. Program.

References

[1] Isaac Agudo, M. Carmen Ferniandez Gago, and Javier Lopez. A model for trust
metrics analysis. In TrustBus, pages 28-37, 2008.

[2] Yudis Asnar, Tong Li, Fabio Massacci, and Federica Paci. Computer aided threat
identification. In Proceedings of the 2011 IEEE 13th Conference on Commerce
and Enterprise Computing, CEC ’11, pages 145-152, Washington, DC, USA,
2011. IEEE Computer Society.

[3] Yudistira Asnar, Paolo Giorgini, and John Mylopoulos. Goal-driven risk assess-
ment in requirements engineering. Requirements Engineering, 16(2):101-116,
2011.

[4] Jason Crampton and Michael Huth. Towards an access-control framework for
countering insider threats. In Christian W. Probst, Jeffrey Hunker, Dieter Goll-
mann, and Matt Bishop, editors, Insider Threats in Cyber Security, volume 49 of
Advances in Information Security, pages 173-195. Springer US, 2010.

18



(5]

(8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

Golnaz Elahi, Eric Yu, and Nicola Zannone. A vulnerability-centric require-
ments engineering framework: analyzing security attacks, countermeasures, and
requirements based on vulnerabilities. Requirements Engineering, 15(1):41-62,
November 2009.

Software Engineering Institute. 2011 cybersecurity watch survey. Technical re-
port, Software Engineering Institute, Carnegie Mellon, 2011.

Javier Lopez Isaac Agudo, Carmen Fernandez-Gago. A scale based trust model
for multi-context environments. Computers and Mathematics with Applications,
60:209-216, July 2010.

Audun Jgsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618—644,
March 2007.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-
compliance: security analysis in trust management. J. ACM, 52(3):474-514, May
2005.

Tong Li, Lin Liu, and Barrett R Bryant. Service Security Analysis Based on i*:
An Approach from the Attacker Viewpoint. In Security, Trust, and Privacy for
Software Applications (STPSA 2010), pages 127-133, Seoul, 2010.

Lin Liu, E Yu, and John Mylopoulos. Security and privacy requirements analysis
within a social setting. Proc.of RE, 3:151-161, 2003.

Fabio Massacci, John Mylopoulos, and Nicola Zannone. Security Requirements
Engineering : The SI * Modeling Language and the Secure Tropos Methodology.
In Zbigniew Ras and Li-Shiang Tsay, editors, Advances in Intelligent Information
Systems, volume 265 of Studies in Computational Intelligence, pages 147-174.
Springer Berlin / Heidelberg, 2010.

Raimundas Matuleviius, Haralambos Mouratidis, Nicolas Mayer, Eric Dubois,
and Patrick Heymans. Syntactic and semantic extensions to secure tropos to
support security risk management. Journal of Universal Computer Science,
18(6):816-844, mar 2012.

Nancy R. Mead and Ted Stehney. Security quality requirements engineering
(square) methodology. SIGSOFT Softw. Eng. Notes, 30(4):1-7, May 2005.

D. Mellado, E. Fernandez-Medina, and M. Piattini. Applying a security require-
ments engineering process. Computer Security—-ESORICS 2006, pages 192-206,
2006.

Haralambos Mouratidis and Paolo Giorgini. Secure tropos: a security-oriented
extension of the tropos methodology. International Journal of Software Engi-
neering and Knowledge Engineering, 17(2):285-309, 2007.

19



(17]

(18]

(19]

(20]

(21]

G. Silowash, D. Cappelli, A.P. Moore, R. F. Trzeciak, T. J. Shimeall, and L. Flynn.
Common sense guide to mitigating insider threats. Technical Report CMU/SEI-
2012-TR-012, Software Engineering Institute, Carnegie Mellon, December 2012.

A. Van Lamsweerde. Elaborating security requirements by construction of in-
tentional anti-models. Proceedings. 26th International Conference on Software
Engineering, pages 148-157, 2004.

A. Van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engineering,
26(10):978-1005, 2000.

ESK Yu. Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto, Canada, 1995.

Nicola Zannone. A Requirements Engineering Methodology for Trust, Security,
and Privacy. PhD thesis, University of Trento, Italy, 2007.

20



Table 8: Axioms for identification of insider threats

Insider Threat to Confidentiality

a threat(Al, asset_instance(service_instance(S, A, P), A, P), con fidentiality extreme)«—
asset_instance(service_instance(S, A, P), A, P) A sec_req_instance
(service_instance(S, A, P), con fidentiality, A, P) A permission_instance

(A1, service_instance(S, A, P), access) A sensitivity_instance

(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P), access, very bad) A Al # A

b threat(Al, asset_instance(service_instance(S, A, P), A, P), con fidentiality,extreme)<«
asset_instance(service_instance(S, A, P), A, P) A sec_req_instance
(service_instance(S, A, P), con fidentiality, A, P) A permission_instance

(A1, service_instance(S, A, P), access) A sensitivity_instance(service_instance

(S, A, P),very high, A, P) A trust_perm_instance(A, Al, asset_instance
(service_instance(S, A, P), access, bad) A A1 # A

c threat(Al, asset_instance(service_instance(S, A, P), A, P), con fidentiality,extreme)<—
asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance
(S, A, P), confidentiality, A, P) A permission_instance(Al, service_instance

(S, A, P),access) A sensitivity_instance(service_instance(S, A, P),very high, A, P) A
trust_perm_instance(A, Al, asset_instance(service_instance(S, A, P), access, neutral) A
Al +# A

Tl

Insider Threat to Integrity

a threat(Al, asset_instance(service_instance(S, A, P), A, P), integrity,extreme)<—

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P),integrity, A, P) A permission_instance(Al, service_instance(S, A, P), modify) A
T2  sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P),modify, very bad) A A1 #£ A

b threat(Al, asset_instance(service_instance(S, A, P), A, P), integrity,extreme)<—

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P),integrity, A, P) A permission_instance(Al, service_instance(S, A, P), modify) A

sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P),modify, bad) A A1 # A

c threat(Al, asset_instance(service_instance(S, A, P), A, P), integrity,extreme)<—

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P),integrity, A, P) A permission_instance(Al, service_instance(S, A, P), modify) N

sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P), modify, neutral) A A1 # A

Insider Threat to Availability

athreat(Al, asset_instance(service_instance(S, A, P), A, P), availability extreme)<«

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P), availability, A, P) A permission_instance(Al, service_instance(S, A, P), manage) A
T3  sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P), manage, very bad) A A1 # A

b threat(Al, asset_instance(service_instance(S, A, P), A, P), availability extreme)<—

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P), availability, A, P) A permission_instance(Al, service_instance(S, A, P), manage) A

sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, A1, asset_instance(service_instance(S, A, P), manage, bad) A A1 # A

c threat(Al, asset_instance(service_instance(S, A, P), A, P), availability extreme)«—

asset_instance(service_instance(S, A, P), A, P) A sec_req_instance(service_instance

(S, A, P), availability, A, P) A permission_instance(Al, service_instance(S, A, P), manage) A

sensitivity_instance(service_instance(S, A, P),very high, A, P) A trust_perm_instance

(A, Al, asset_instance(service_instance(S, A, P), manage, neutral) A A1 # A




	Introduction
	Running Example - Patient Monitoring
	The SI* Modeling Framework
	SI* extensions
	Asset Model
	Trust Model
	Derivation and Resolution Rules
	Transformation Rules


	Identifying Potential Threats
	Build SI* Model
	Identify Critical Assets
	Determine Permissions on Assets
	Instantiating the SI* model
	Instantiate Assets
	Instantiate Permissions on Assets
	Instantiate Trust of Permissions relation

	Detecting Insider Threats

	Related Work
	Conclusion and Future Work

