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Abstract

Covert channels are a form of hidden communication that may violate
the integrity of systems. Since their birth in Multi-Level Security systems in
the early 70’s they have evolved considerably, such that new solutions have
appeared for computer networks mainly due to vague protocols specifications.
In this paper we concentrate on short-range covert channels and analyze the
opportunities of concealing data in various extensively used protocols today.
From this analysis we observe several features that can be effectively exploited
for subliminal data transmission in the Dynamic Host Configuration Protocol
(DHCP). The result is a proof-of-concept implementation, HIDE_DHCP,
which integrates three different covert channels each of which accommodate
to different stealthiness and capacity requirements. Finally, we provide a
theoretical and experimental analysis of this tool in terms of its reliability,
capacity, and detectability.

Keywords: System Information Security, Network Security, Covert
channels, Information Warfare, Intrusion Detection

1. Introduction

Evolution of computer networks in recent years has led to the develop-
ment of new services and, simultaneously, to the emergence of new threats
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for interconnected systems. Covert Channels is a sub-discipline of Informa-
tion Hiding which has been usually considered a threat to security in both
centralized (e.g., Lampson (1973); Gligor (1993)) and distributed systems
(e.g., Li and Ephremides (2010)). Network covert channels can be defined as
a way of transmitting hidden information (i.e., unnoticed to a possible ob-
server) using communication protocol features that are not properly defined
or whose main functionality is misused. Therefore, as established, it should
be possible to design covert channels at any level of the OSI stack, from the
physical to the application layer.

Traditionally, covert channels have been grouped into two main categories
(Brand, 1985): storage and timing channels. This classification refers to how
the information to be transmitted is hidden. In the former, the sender hides
data in memory areas to which the receiver has access. These memory areas
might be certain header fields in network packets which are either obsolete
or whose modification does not affect the proper functioning of the protocol.
On the other hand, timing channels are based on modulating the behavior of
the sender in order to encode information, which in practice is implemented
by means of packet rate alterations.

Covert channels have not only been studied from a theoretical perspective.
Several tools have been designed to hide information flows between two or
more hosts. Usually, these tools take advantage of protocols widely used in
most existing networks, such as TCP/IP (Rowland, 1996), HTTP (Dyatlov,
2003) or DNS (Kaminsky, 2004). Nevertheless, there are still many protocols
that have not been analyzed for covert communication channels. In this work
we explore various widely used protocols for short-range communications and
finally develop a proof-of-concept implementation that integrates three covert
channels in DHCP that may be used under different capacity and covertness
requirements.

The rest of this paper is organized as follows. Section 2 provides an
overview of the evolution of covert channels, from its origins to present im-
plementations and detection mechanisms. Section 3 depicts a potential usage
scenario, obtains its requirements and details the main features of the ad-
versarial model under consideration. In Section 4 we provide an exhaustive
analysis on the opportunities for information hiding in several protocols that
satisfy the requirements imposed by our scenario. Next, Section 5 presents
HIDE_DHCP, a new tool that integrates three forms of covert communica-
tions in DHCP resulting from the previous analysis. Moreover, Section 6
discusses on the advantages and limitations of the implemented methods,



paying special attention to the tradeoff between capacity and detectability.
In addition, it provides an experimental analysis on the reliability, capacity,
and detectability of our tool. Finally, Section 7 concludes this work and
examines future research directions.

2. Related Work

The covert channel term was first introduced by Lampson (1973) in Multi-
Level Security systems to describe the ability of high security processes to
signal information to other processes with lower security clearance. This
concept began to draw security experts attention and was included in Brand
(1985) and later in Gligor (1993) for the evaluation of systems security. Also,
a chapter of McHugh (1996) was devoted to covert channels analysis and de-
tection, where covert channels are first defined from a perspective that could
be applied not only to Multi-Level Security systems but also to computer
networks.

Network covert channels were originally studied in Girling (1987), where
two storage channels and one timing channel were identified. This work
paved the way for new studies like Wolf (1989), which analyses the IEEE
802.2 and 802.5 protocol families, and Handel and Sandford (1996) where
the entire OSI reference model is discussed. The first known implementa-
tion, Covert_TCP, which is owed to Rowland (1996), uses three methods to
hide information in the TCP and IP headers®. Shortly after, LOKI2 (Dae-
mon9, 1997), a new covert channel that uses the payload in ICMP packets,
was developed. Also PingTunnel (Stgdle, 2005) took advantage of ICMP to
implement a subliminal channel. Additionally, some other well-known pro-
tocols were exploited by FirePass (Dyatlov, 2003) and Ozyman (Kaminsky,
2004), which created covert channels in HTTP and DNS respectively.

In general, the aforementioned channels benefit from misused packet
headers but some other authors developed timing channels as well. The first
timing channel implementation is presented in Cabuk et al. (2004), where
the authors had to deal with synchronization problems due to the absence
of a common precision clock. Shah et al. (2006) implement the JitterBug,
which adds negligible delays to keystrokes in interactive network applications

2The vulnerabilities where found in IPv4. Later, IPv6 was found to be vulnerable to
22 forms of covert channels (Lucena et al., 2006) even before its widespread adoption.



(e.g., telnet) and these delays conceal a message that is retrieved by a re-
mote party. Also, Luo et al. (2007) present a highly reliable timing channel,
Cloak, that encodes a message by a unique distribution of various packets
over several TCP flows. In addition, many advances have been done on the
detection of timing channels based on, for example, the similarity of time
intervals (Cabuk et al., 2009) and the use of entropy and conditional entropy
(Gianvecchio and Wang, 2011).

Although, extensive research has been conducted in the design and im-
plementation of covert communication channels there are still numerous pro-
tocols which are susceptible to convey hidden data either for legitimate or
illegitimate purposes. In particular, we evaluate various protocols which, to
the best of our knowledge, has not been exploited for such purposes yet.

3. Problem Statement

This section depicts a fictitious scenario which determines the conditions
under which our covert channel should work as well as its main features.
Also, it presents the capabilities of the adversary that the channel must be
able to cope with.

3.1. Motivating Scenario and Attacker Model

Consider a scenario where two entities, namely Alice and Bob, want to
communicate an extremely important piece of information. Alice and Bob are
representatives of different countries which are involved in sensitive political
or military affairs. Under such circumstances, they choose not to communi-
cate through the Internet because of the potential threat of being observed
by the government agencies from other countries.

Leveraging the fact that in the following days Bob is visiting the embassy
where Alice works due to the holding of a summit of the Heads of State, Bob
will try to provide her with the valuable information. The information to
be transmitted to Alice is a small piece of critical information, which in case
of being incorrectly received would render the covert communication useless
besides posing the risk of being detected. A clear example of such a piece of
information is a cryptographic key or token since the corruption of a single
bit of these data result in unexpected outcomes.

During the summit it is also important that Alice and Bob do not meet
alone because this might arise suspicion on the rest of attendees. Since
Alice works and has privileged access to part of the network deployed in
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the embassy they can benefit from this issue to setup some communication
channel that remains hidden to others. Moreover, the rest of attendees might
monitor any transmission since they have reasons to suspect that Alice and
Bob will try communicate. These are known in the literature as passive
attackers® since they restrict their actions to the observation of the (timing
and /or content) patterns of the traffic traversing the network. Furthermore,
the attendees can not expose themselves by delaying or modifying the packets
traversing the network (i.e., perform active attacks) because this might be
considered as lack of trust in Alice and Bob and it may result in a conflict.
In real-world settings, this functionality is usually implemented by means
of Network Intrusion Detection Systems (NIDS), which can be qualified as
global observers in the our model.

Therefore, Alice and Bob must find a way to communicate small amounts
of data using an apparently innocuous channel. To that end, they must not
introduce additional traffic in the network nor use unusual network proto-
cols (i.e., setting up dedicated network channels, such as ad-hoc networks).
Therefore we consider that Alice and Bob have access to the shared com-
munication channel at any time with any of the protocols analysed in the
following section and a priori raising no suspicion. Also, taking advantage of
confidentiality mechanisms (i.e., encryption) is not a plausible solution since
the mere observation of encrypted payloads suggests that Alice and Bob are
up to something. However, encryption can be used by Alice and Bob as an
extra protection to the data conveyed by the covert channel.

3.2. Covert Channel Requirements

Now we identify several properties for the hidden communication channel
that should be satisfied in order to circumvent the threat of the (global and
passive) attacker model under consideration:

e Stealthiness: Potential observers should be unable to detect the pres-
ence of a hidden communication channel. This feature is leveraged by
the fact that the protocol to be chosen has not been previously used to
transmit covert data.

3What we call attacker in this paper has been historically called Warden because of
the renowned Prisoners’ Problem (Simmons, 1983). In this respect, Alice and Bob are
not considered attackers but users of a tool that allows them to communicate even in the
presence of a Warden that wants to limit their rights.



o Moderate bandwidth: The capacity is not a critical factor since the
motivation of the channel is the transmission of small amounts of in-
formation.

o Reliability: The data being communicated is extremely sensitive, there-
fore it is necessary that these are correctly received. The loss of small
pieces of data may result into a great loss of information. Consider, for
example, the previous scenario where the data to be transmitted is a
cryptographic key.

e Locality: The goal is not to convey information through the Internet but
to create a hidden communication channel between nodes in a local or
personal area network, where there might be other entities monitoring
all the communications.

o Unidirectionality: The channel is not intended to allow the users to
exchange information but instead transmit information that might be
later used for other purposes, thus having a one-way communication
channel will suffice.

Considering the aforementioned requirements, in the following we provide
an analysis of various network protocols in order to find the opportunity to
conceal and transmit relevant information in short-range communications.
We concentrate on protocols that are incorporated in many devices and which
are of widespread use in local networks such as NetBIOS, Bluetooth, and
DHCP since their occurrence would not be considered as a threat. Also,
those protocols should be implemented on Alice and Bob’s devices fulfilling
the standards and their operation cannot be altered by the proposed covert
channels.

4. Analysis of Candidate Protocols

For any application of steganographic techniques the characteristics of the
cover chosen for embedding data have to be investigated thoughtfully in ad-
vance. This section provides an analysis of three protocols that are commonly
used in local or personal area networks, namely, NetBIOS, Bluetooth? and

4 A more complete analysis of these protocols can be retrieved from https://www.nics.
uma.es/sites/default/files/TechReport-candidates.pdf
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Figure 1: Name Service Packet Structure

DHCP. We provide an in-depth analysis of DHCP since our proof-of-concept
implementation is based on it.

4.1. Network Basic Input/Output System

NetBIOS (Network Basic Input/Output System) (NetBIOS Working Group,
1987a,b) allow computers to locate resources and share them in the same lo-
cal network. In order to provide these services NetBIOS defines three groups
of protocols. Here we concentrate on the Name Service protocols mainly
because in a real setting these packets are more likely than Datagram and
Session packets, which are only used occasionally.

4.1.1. Name Service

The Name Service is used to register and locate resources in the network.
It usually operates on the UDP port 137 and it defines 17 type of packets,
whose structure is depicted in Figure 1.

Provided that there are many types packets available and that most of
the fields are variable in size, it is likely that the Name Service protocols
offer interesting opportunities to signal covert data. Our analysis will be
focused on storage channels although several timing channels might be also
exploited. For example, a node might decide whether to respond to name
registration requests in order to signal 0-bit or 1-bit values to the colluding
requester. Also, since any non-responded request is repeated and it is usual
to observe simultaneous requests belonging to the same transaction, a covert
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sender could use the number of repetitions as a code. The opportunities of
hiding information in this way are countless but it is necessary to deal with
synchronization issues and packet loss.

The Header field (12 bytes) is used for identifying packets belonging to
the same transaction as well as the number of entries and resource records
of each type. The most relevant field here is the transaction identifier,
NAME_TRN_ID (2 bytes), which is usually set to random value and then
incremented by one for each new transaction.

Secondly, the Question Entries field define the name being registered,
released, refreshed or queried. The Question name contains either a NetBIOS
name or a label string pointer, which is indicated by the first byte of the field.
This byte contains a particular bit pattern from which some are reserved but
these are very rarely used (if ever). When the field contains a NetBIOS name
and it is shorter than 16 characters, real systems complete them with space
characters thus limiting the inclusion of covert data.

Finally, Resource Records is used to convey data about the requested
resources. The general format of this field is depicted at the bottom of
Figure 1b but it might present slight variations depending on the type of
record (i.e., Answer, Authority, or Additional). In these fields, the most
valuable field is TTL (4 bytes), which is used to indicate the validity period
of a resource name, because slight changes in its low-order bits would pass
unnoticed. Also, the Resource Data field contains resource information and
its length is defined by Resource Data Length. Therefore, it might be possible
to incorporate additional information after the expected contents.

4.2. Bluetooth

Bluetooth is a short-range wireless communication technology that allows
the transmission of voice and data between nearby devices (Bluetooth SIG,
2012). Bluetooth defines several communication modes (i.e., profiles) but
here we concentrate on Bluetooth-specific protocols at the physical and MAC
layers (IEEE Computer Society, 2005), whose packet structure is depicted
in Figure 2. In particular we analyse the discovery and connection between
devices.

5The header filed is actually 54 bits long because every bit is repeated 3 times.
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4.2.1. Device Discovery and Connection

The discovery phase allows a node to obtain the address of other devices
nearby previously to its connection. In this process there are two types of
messages involved. Therefore, we analyze these messages in search of fields
that might be useful as covert data carriers.

e ID packet: it consists of a device access code (DAC) or inquiry access
code (IAC), that is, a preamble (0101 or 1010) and a sync word (see
Figure 2). The value of the preamble depends on the least significant
bit (LSB) of the sync word. The sync word is derived from a 24 lower
bits of the bluetooth device address (LAP). However, inquiry messages
use either a general inquiry access code (GIAC) for the discovery of any
type of device, or dedicated inquiry access codes (DIAC) for a specific
device type, instead of the actual LAP of the device. Consequently,
there is no room for hiding data in this type of packets.

e FHS packet: The structure of FHS packets is depicted in Figure 3.
The LAP, UAP, and NAP fields constitute the physical address of
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the device. Modifying these values is possible but they follow a par-
ticular pattern depending on the manufacturer. Thus, a completely
randomized address might alert a potential observer. Also, once the
physical address is changed, it should be unaltered during the rest of
the discovery and connection phase. Continuously starting unsuccessful
connections would raise suspicion on other nearby devices.

The Extended Inquiry Response (EIR) field indicates that the device
might response with an extended inquiry response packet containing
more information about the services it supports. However, it is possible
to send a packet with EIR set and receive no extended responses, which
might be used to signal a bit of data. Moreover, the different inquiry
response packets offer payloads of various sizes (up to 339 bytes). We
will not analyze them further but it is worth mentioning that it is
possible to signal data based on the type of packet used and the payload
size.

Finally, the Class of Device is a 24-bit field that indicates the type of
device (e.g., keyboard, PC, phone) being contacted. This is mainly
used to provide the user with a graphical representation of the device.
Therefore, the modification of some of these bits would not interfere
with the operation of the protocol. However, from bit 23 to 13 only one
bit should be set at once since they are flags that indicate the service
class. Also, constinous changes on the type of device while the physical
address of the device is unchanged might alert an observer.

We consider this protocol might be susceptible to new forms of covert
channels, however, we will not delve further into it because we consider the
analysis provided is sufficient to give a general idea of the concealment op-
portunities provided by Bluetooth.

4.83. Dynamic Host Configuration Protocol

DHCP (Dynamic Host Configuration Protocol), an auto-configuration

protocol used on IP networks, can be considered as an extension of BOOTP
(Bootstrap Protocol). It is an application-level protocol which uses UDP as
its transport layer on ports 67 and 68 for the server and the client respec-
tively. Regardless of using a datagram service, packet loss is unusual since
the scope of this protocol is usually found within the same local area network.
Despite this, DHCP provides some recovery mechanisms against packet loss,
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Packet “ Direction | Description

Discover C—S Broadcast message used to find servers.
Offer C+ S Response to DHCP Discover. It contains

a configuration offer.

Message to confirm the acceptance of the

Request C—S parameters offered by the server or the

renewal of a previous configuration.

Message acknowledging the parameters

Ack C+«+ S agreed with the client. It includes the IP

address to be used.

Indicates the client the non acceptance

Nak C+«+ S of the configuration, either because the
IP is incorrect or the lease has expired.
Decline C—S Message to indicate that the IP address is
already in use by another client.
Release C—S Message to reject the given IP address,

thus canceling the current lease.

Message used to request more information
Inform C—S about the configuration; the client already
has an IP address.

Table 1: DHCP Messages

such as the retransmission of packets when no response is received after a
given period of time.

The DHCP protocol uses a request-response model in which the client
is always in charge of starting the communication. Client-server interac-
tion is done in transactions, where several messages are exchanged. Table 1
provides a description of the different types of messages and the direction
of the communication, where C' and S represent the client and the server,
respectively.

Two message exchange models exist in DHCP. The first model is used
the first time a client requests the network configuration parameters, or in
the case the configuration lease expires. Figure 4 depicts a complete con-
figuration process. The second model comes into play if the lease is still
valid but the client is trying to renew (which usually occurs when 50% of
the remaining time has been reached) that specific configuration with the
server. This model can be regarded as a sub-model of the previous one (see
dashed arrows in Figure 4) since it starts with a Request message aiming
to renew the configuration parameters with the DHCP server. The usual
exchange is as follows: Discover, Offer, Request, Ack and, optionally (dot-
ted arrow), Release. However, the first two messages are only possible in the
first model. This is important because modifying the natural communication
models might alert an observer of the presence of the channel.
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Figure 4: Message exchange models in DHCP

DHCP messages share a common header structure regardless of whether
they come from the server or the client. A detailed illustration of a DHCP
packet is given in Figure 5. The packet is divided into various fields which
are kept for backward compatibility with the original BOOTP protocol, thus
providing more chances to allocate hidden data. In the following, we analyze
the fields that we consider more relevant for covert communication purposes.

First, the transaction identifier (zid) field has the potential to convey up
to 32 bits of covert information. Interestingly, according to the protocol RFC
Droms (1997) this value must be randomly created by the client. This implies
that there is no agreed algorithm for the identifier generation, as with the
sequence number generator in TCP, which makes the detection of the covert
channel more challenging.

The field secs can be used in a similar way as proposed in Giffin et al.
(2002) to hide information in the TCP timestamps option. The low-order bit
of TCP timestamps is basically random due to host internal timings, thus it is
easy to change this value to convey data without alerting a potential observer.
The concealment of information without a technique such as the one proposed
in Griffin’s work could raise suspicions or could cause a particular server
to stop working correctly upon the reception of new messages apparently
delayed in time.

Also, the field chaddr (16 bytes) presents at least two potential ways of
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Figure 5: DHCP header format

carrying hidden data. In the first place, it could be possible to use a technique
similar to the one used by Rowland (1996) in the third method developed
for Covert_TCP, taking advantage of bouncing DHCP servers. In order to
make this possible, the MAC address of the entity to be contacted should
be included in chaddr. Besides, the data to be sent must be included in a
header field which is not modified during the transaction, such as the zid.
This makes the DHCP server to respond to the client specified in the chaddr
instead of the real sender of the message, thus unknowingly helping the sender
to convey the data to its destination. The only inconvenience would be having
a datagram with a different MAC address to the one specified in the DHCP
header. Although this is technically possible without disturbing the normal
operation of the network, this could be easily identified as a spoofing attack
by an intrusion detection system. The second chance for concealing data is
due to the length of the chaddr field, which is fixed to 16 bytes while most
of the times it is used for Ethernet addresses (6 bytes). Since the amount
of relevant data in chaddr is defined by the hlen field, the remaining bytes
can be used to convey the covert data. These remaining bytes are to be
considered by ordinary servers as garbage and they do not analyze them.
The fields sname and file may carry an optional server name and a client
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boot file name, respectively. These fields are potentially excellent carriers of
information due to their large size, 64 and 128 bytes respectively. Both fields
consist of null-terminated strings (‘\0’), thus our data might be included after
this character without negatively impacting other clients or servers, which
would consider that such fields do not contain relevant information. Although
these fields are usually set to null by the operating system when they are not
carrying their own data, in some situations they might contain information
belonging to the Options field, which for reasons of packet capacity cannot
be held within the field designed for such purpose. To indicate this situation,
the RFC states that the option 52 (Overload) must be included. The main
inconvenient in using these fields as covert information carriers is that, though
not specified in the protocol definition, they are often filled with zero bytes
when the Owerload option is not active. This may alert to trained traffic
analyzers.

Moreover, the Options field also presents interesting features which might
be used to conceal information. The fact that it is a variable length field
provides the ability to withhold much data, either on (1) the number of
options used or (2) on the way options are ordered. Furthermore, we might
also encode data by (3) placing a specific option in a particular position
within the Options field. To clarify this, we provide further explanations on
how each of the proposed methods could be used to encode the “ALOHA”
string:

1. Number of options: for the sake of simplicity we assume that only
capital letters can be sent, thus limiting the number of options to be
included. To further reduce the number of options, instead of using the
usual ASCII encoding we might use our own codification. For example,
letter A’ could be signaled by transmitting a message with 2 options®,
letter ‘B’ with 3 options, and so on. Therefore, to transmit “ALOHA”
the client needs to send 5 DHCP messages, each of them with the
following number of options: 2 (‘A’), 13 (‘L’), 16 (‘O’), 9 (‘H’), and 2
(‘A’) options respectively.

2. Options ordering: we assume that we want to encode the ASCII al-
phabet (8 bits) by setting options in a particular order. There are at
least two ways of doing this. In the first case, we must have 8 refer-

6The RFC requires the occurrence of at least 2 options: “DHCP Message Type” and
MEnd”
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ence options and if a particular option appears, the bit related to that
option is equal to 1 and 0 otherwise. The second way is to have a ref-
erence message to compare with: if a particular option appears in the
message received in the same order as in the reference message, the bit
corresponding to this option is set to 1 and 0 otherwise. For example,
assume we have an alphabet comprised of 16 symbols, then we should
use 4 options to encode one character. Also assume that we considered
the options A, B, C' and D in that particular order. If we receive a
message containing C', B, A, D, then the hidden message is 0101.

3. Option type: by using the type of an option placed in a particular
position, we might encode an alphabet of up to 8 bits (options types are
within the range 0 to 255). Without loss of generality, let us consider
the option placed in the second position as the option used to conceal
the covert data. In order to send the message “ALOHA” five messages
are needed and, for each of them, the second option must be option
number 65 ( “NIS-Server-Addr”), 76 ( “STDA-Server”), 79 ( “Service
Scope”), 712 (“WWW-Server”) and 65; which are the ASCII equivalent
codes of the string to be sent. In order to increase the capacity of
this channel, instead of encoding a single symbol per packet, several
different options could be used as data carriers within every packet.

One of the biggest downsides presented by the use of the above methods
is that depending on the type of message there are a number of options which
are either mandatory or not permitted. Therefore, the ability to deploy any of
these solutions will depend on whether the introduction of unauthorized op-
tions in specific packets will influence the operation of the protocol. Another
drawback, which is specific to the third proposed method, is that encoding
messages with repeated characters may entail the creation of repeated op-
tions within the same packet which, although possible in some cases, may
raise suspicions. However, this issue might be easily solved by sending char-
acters only if the next character to encode has not already been included in
the current message.

Finally, one might take advantage of the existence of some particular
options that are either undefined or declared for private use. These options
(84, 96, 102-111, 115, 126, 127, 137-149, 151-174, 178-207, 212-219, 222 and
223 are not assigned or have been erased; and 224-254 are for private use),
specially those for private use, are potentially excellent information carriers
since their structure has not been defined. Thus, anyone could define the
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value field in the option to be as large as necessary, up to 255 bytes.

4.4. Candidate Selection

After the analysis of the three candidate protocols for short-range com-
munications we can conclude that DHCP is the most suitable candidate for
the requirements established in Section 3.

NetBIOS opens the door to a significant number of fields that might be
exploited for covert communications given the existence of 3 types of services.
Also, each of the services has its own packet structure and define numerous
types of messages which are intended for different situations. However, after
scrutinizing these fields it was not easy to find a stealthy cover for our data.
From our analysis we conclude that the most pertinent way of signaling data
is by modulating the number of messages and the order of arrival at the des-
tination given numerous control packets of this type traversing the network.
However, the capacity of such channels is usually low and very susceptible
to network delays. Another possibly convenient way of hiding data is intro-
ducing more entries or resource records than indicated by the Count fields,
however it is unclear whether the protocol would function properly. Also, a
meticulous observer would easily detect this as a threat.

In Bluetooth the main drawback is that the specifications analyzed op-
erate at the low-layer of the protocol stack, which reduces the opportunities
to hide data without perturbing the functioning of the protocol. Also, the
capacity of these channels is insignificant compared to other higher level pro-
tocols. Probably, the most interesting field to conceal data is the one used
to indicate the class of device but it has some limitations as discussed in
Section 4.2.1.

In general, we can say that DHCP the most suitable candidate for several
reasons. First, it is a renovated version of a primitive protocol and thus it is
by far the most widely used protocol. Second, the structure of the packets is
common for any type of message. Also, the fields are mainly large and their
size is fixed regardless of their actual contents. Moreover, there are some
fields which are specified to be set randomly and others reserved for private
use. The main downside of this protocol is that the presence of packets from
the client is determined by the lease time. All these features allows us to
create various channels for different situations depending on the need for
capacity or covertness.
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5. Covert Channel Implementation

In this section we describe the implementation of HIDE_DHCP, which
integrates 3 methods for covert communications using the zid, Sname and
File, and Options fields in DHCP. The implementation is based on an already
existing DHCP code, that we modified, originally developed by the Internet
Systems Consortium (version 4.1.1-P1 (ISC, 2011)) and distributed in Linux
operating systems.

5.1. Xid Implementation

The zid field is 4 bytes long and in the original ISC code it is loaded
with the result of the random() function. This process is performed twice in
the client code during the make_discover and state_reboot procedures, which
are invoked every time a client requests a configuration (i.e., Discover and
Request packets).

The modifications performed on the ISC code were done in such a way
that the protocol specification is not altered. This results in a stealthier
channel which is fully compliant with any DHCP client or server. In par-
ticular, the modified clients are able to request for network configuration
parameters while transmitting hidden information to the servers and also
they might behave as ordinary clients without conveying any information
at all. Consequently, this choice must be notified to the modified server in
order to be able to interpret the xid as data. In order to help the server in
identifying which client is sending covert data, start and end delimiters are
used (codified within the xid field). These delimiters are predefined but they
can be modified in order to introduce some uncertainty to potential network
traffic analyzers. See Section 6 for further details.

Upon the reception of a packet coming from a colluding client and con-
taining the start delimiter, a new covert session starts. The received data is
stored locally until the reception of the end delimiter. The data contained
in the xid field is retrieved from DHCP Requests since this is a common
message in both exchange models (recall Figure 4).

Furthermore, in order to enhance client-server interaction we introduced
additional mechanisms to allow these entities to determine if they are com-
municating with the right entity, since several clients and servers might co-
exist in the same network and sending covert data to unmodified servers is
not only useless but also might increase the detection ratio. For example,
if the client does not receive a reply from the colluding server, then it will
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perform as an ordinary client even if he was willing to convey covert data.
Nevertheless, note that this is an enhancement and that the present covert
channel specification does not need client and servers identification (except
for practical purposes).

5.2. Sname and File Implementation

The sname and file fields present very similar features. According to the
protocol specification, both fields are defined as null-terminated strings and
might only carry data in the case of Discover, Inform and Request packets
when coming from the client side. In case the messages are sent by the
server, only Offer and Ack packets are allowed to carry data within these
fields. This has been taken into consideration in order to avoid altering the
normal functioning of the protocol.

The strategy in this case is to pretend to be sending empty fields by
setting the first byte to the null character. Consequently, the implementation
is able to hide a maximum of 190 bytes of data per packet, from which 63
bytes are kept within the sname field and 127 bytes within the file field. In
this implementation Discover and Request packets are used as data carriers.
Now we have two packets carrying data per transaction because unlike the
xtd field, they need not be constant during the whole transaction. In Figure 6
we show a snapshot of a modified server simultaneously receiving data from
two colluding clients. We use the —cc flag to indicate the server to accept
data from clients and dump them to files.

In this implementation we also make use of delimiters because some im-
plementations do not set to null these fields but instead they insert garbage.
The use of delimiters prevents the modified server from storing undesired
data. Also, note that the existence of implementations where the sname and
file fields are filled with garbage increases the covertness of our implementa-
tion.

5.3. Options Implementation

From the various data hiding opportunities presented in Section 4.3 for
the Options field we decided to implement a covert channel taking advantage
of the options for private use. The main reason for this is that these might
provide a substantial capacity compared to other choices. Another advantage
of using these options is that since they are not (very often) used, the mere
observation of such option in the server indicates that a client is willing to
communicate.
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Archivo Editar Ver Terminal Ayuda
debsquid@squid:~$ sudo dhcpd -d -cc cfile [l
Internet Systems Consortium DHCP Server 4.1.1-Pl
Copyright 2004-2010 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.1isc.org/software/dhcp/
Wrote 3 leases to leases file.

Listening on LPF/eth0/00:0c:29:93:37:da/172.16.232.0/24
Sending on  LPF/eth0/00:0c:29:93:37:da/172.16.232.0/24
Sending on  Socket/fallback/fallback-net

DHCPDISCOVER from 00:0c:29:8b:f2:46 via etho

Received start of transmission je—
DHCPOFFER on 172.16.232.128 to 00:0c:22:8b:f2:46 (onieva.uma) via etho
DHCPREQUEST for 172.16.232.128 (172.16,232.129) from 00:0c:29:8b:f2:46 (onieva
.uma) via etho
DHCPACK on 172.16.232.128 to 00:0c:29:8b:f2:46 (onieva.uma) via etho
DHCPDISCOVER from 00:50:56:22:09:d3 vih etho

DHCPOFFER on 172.16.232.130 to 00:50:55:22:09:d3 (ruben.uma) via etho

Received start of transmission

Received end of transmission
DHCPREQUEST for 172.16.232.130 (172.16}232.129) from 00:50:56:22:09:d3 (ruben.
uma) via etho
DHCPACK on 172.16.232.130 to 00:50:56:22:09:d3 (ruben.uma) via etho
DHCPREQUEST for 172.16.232.130 from 00:50:56:22:09:d3 (ruben.uma) via etho
DHCPACK on 172.16.232.130 to 00:50:56:22:09:d3 via etho

DHCPREQUEST for 172.16.232.128 from 00;0c:29:8b:f2:46 (onieva.uma) via etho
DHCPACK on 172.16.232.128 to 00:0c:29:3b:f2:46 (onieva.uma) via etho

Received end of transmission
DHCPREQUEST for 172.16.232.130 from 00:50:56:22:09:d3 via etho
DHCPACK on 172.16.232.130 to 00:50:56:22:09:d3 via etho
DHCPREQUEST for 172.16.232.130 from 00:50:56:22:09:d3 via etho
DHCPACK on 172.16.232.130 to 00:50:56:22:09:d3 via etho

(<]

Figure 6: Simultaneous covert data reception

The modified client injects its data in the payload of an option for private
use’. For our implementation we selected option 224 to convey our data and
no delimiters are introduced. Whenever the server observes this option, it
starts to store the information contained in it.

Also, since the main advantage of this implementation is the capacity
to the detriment of its stealthiness, we decided to include up to 255 bytes
of covert data. In case the maximum capacity of a message is reached, the
Overload option is used and the remaining options are included within the
sname and file fields, if they are not being used.

"We noticed that some options for private use are being used in an unofficial way by
many DHCP servers. A commonly used option is 252 (Proxy Autodiscovery), which is
used for indicating the location of the proxy server configuration parameters.
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6. Implementation Analysis and Evaluation

The covert implementations presented in Section 5 have different fea-
tures that allows the user to decide which method to use depending on the
requirements of the scenario. There is no best covert channel under all cir-
cumstances and usually those who operate well in certain scenarios cease to
be useful in others. Three properties stand out as the most important when
dealing with covert channels: detectability, capacity, and reliability. In this
section we review these properties from a theoretical and experimental point
of view.

For the experimental evaluation we have conducted several tests in a
real scenario, i.e. our laboratory. The network deployment consists of 1
server and 8 personal computers that are connected to a 24-port switch,
which at the same time is connect to a router running its own unmodified
DHCP server. Two additional computers are directly connected to the router,
which provides Internet access to all the systems attached to it. Three out
of all computers connected to the switch are used for our experiments; one
of them runs our modified DHCP server and the other two run modified
clients. Also, an updated version of Snort observes all the traffic from one of
the client machines. The remaining computers are used as usual. For all of
the experiments we generate a random key file (1024 bytes long) and send it
from one (or two simultaneously) DHCP clients to the modified server using
the “sname/file” implementation option®. Each of the experiments is exe-
cuted ten times. Although ten executions are not statistically representative,
packet times are very stable and packet loss is null.

6.1. Reliability

In our covert channel implementation, all the methods present optimum
reliability, mainly due to the basic recovery mechanisms provided by DHCP
against packet loss. In fact, due to this basic recovery mechanism used by
DHCP (Droms, 1997), delays and RTT (Round Trip Time, defined as the
time needed by the client to get an IP address) do not alter the covert channel
reliability. This is because lease period and network delay times are in such
a different order of magnitude that the DHCP client will ultimately succeeds
in communicating with the server (and vice versa). It is therefore easy in

8The results obtained from this evaluation can be extended to the other two covert
channel implementations.
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Figure 7: Packet reception delay

our implementation to identify whether the received packet is repeated or
belongs to a renewal process’.

We have defined a series of tests where we reduce the lease time from 60
seconds down to 0 seconds in order to evaluate the reliability of the DHCP
server under heavy load (i.e., stress) situations. In this context we are in-
terested in the potential occurrence of packet losses, out of sequence packet
arrival or data repetitions. In Figure 7 we appreciate packets transmission
delays observing that there no collisions or retransmissions with a traffic an-
alyzer. In general, the median delays are very close to zero but there are
some isolated cases in which the delay is of the order of several tenths of a
second. Nonetheless, given the granularity of the lease period compared to
these minor delays, this causes no side-effects in the reception of covert data.

6.2. Capacity

Similarly to Wu et al. (2012), we define the capacity of a channel as its
maximum error-free information rate in bytes per hour (bytes/hour). Our
implementations features different capacities (the capacity is usually at odds

9Unless the lease period is short enough to harden this task. Nevertheless, note that,
although establishing a lease period shorter than in real scenarios would significantly
increase the capacity, it would also increase detectability to a limit which will make the
requirements fulfilment not possible.
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with the ability to pass unnoticed and our solutions also present this trade-
off) all of which are affected by the leasing period and this depends on the
network infrastructure deployed. Highly stable networks with a large IP
addresses pool can set the default lease period to eight days, whereas highly
dynamic and limited networks may operate in better conditions with a period
of one hour (let us assume this default case for capacity analysis). The lease
period determines covert channel capacity as follows!:

Capacity ~ 2 x Mazimum size per session | leasing period (1)

The maximum capacity parameter depends on the implementation method
selected and on whether the protocol state belongs to the first or second
model of the DHCP specification (see Figure 4). The zid method provides
a very limited capacity (8 bytes/hour). Thus, this covert channel is recom-
mended for the transmission of small amounts of highly sensitive data, for
example an elliptic curve cryptography key.

The sname and file implementation provides a better capacity. It theo-
retically allows for the transmission of 760 bytes/hour (recall we hide data
in Discover and Request packets) in the first period and 380 bytes/hour in
the following ones.

On the other hand, the options implementation provides the higher capac-
ity (1020 bytes/hour in the first period and 510 bytes/hour in the following
ones) and is recommended for loosely supervised networks because the size of
the resulting DHCP messages might attract the attention of casual observers.
This method would also allow the creation of a bidirectional covert channel
because option 224 is not used for any other purposes.

Table 2 represents DHCP request packets reception as detected by a traffic
analyzer!'. As expected, in the first transmission 377 bytes (the total amount
of data sent is 380 bytes but our delimiter is 3 bytes long) are received while
190 bytes are then sent by the client in each renewal to complete the 1024
bytes original file. Interestingly, when the lease time is set to 0, the client
behaves as if the lease offered by the server is already expired and uses
the complete message exchange model (using both the discover and request
messages in each session).

10Recall that the renewal of the session takes place approximately in the middle of the
lease time period.
Uhttp://www.wireshark.org/ using the traffic filter bootp.dhcp
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Lease Time
60 50 40 30 20 10 5 3 2
82,808 771,267 1377,492 1806,423 2390,329 2958,233 3247,808 5394,831 5812,842
106,723 796,612 1397,493 1821,423 2400,332 2965,235 3250,189 5395,831 5812,870
Exp. 1 132,721 820,606 1417,504 1836,430 2410,330 2972,234 3254,189 5396,831 5812,899
162,720 845,603 1437,500 1852,428 2420,328 2978,233 3258,185 5398,830 5812,926
188,712 866,595 1454,494 1866,424 2432,328 2984,232 3262,185 5399,831 5812,953
340,808 896,639 1474,477 2141,808 2455,317 3024,223 3314,176 5494,808 5916,808
371,658 922,591 1493,477 2154,375 2467,325 3029,225 3317,177 5495,815 5916,838
Exp. 2 395,655 947,565 1511,472 2166,372 2477,319 3034,222 3320,173 5497,814 5916,862
427,650 971,561 1530,484 2181,361 2486,317 3039,222 3323,173 5499,814 5916,890
452,650 996,578 1550,482 2193,368 2496,317 3045,218 3327,173 5500,815 5916,917
477,641 1021,552 1584,462 2216,356 2517,306 3092,212 3378,163 5561,805 6017,808
504,664 1047,551 1605,459 2232,368 2528,315 3099,213 3382,166 5563,803 6017,838
Exp. 3 528,644 1071,564 1624,469 2244,360 2539,303 3105,208 3386,163 5565,803 6017,860
552,650 1093,540 1644,466 2258,357 2550,308 3111,209 3390,163 5567,803 6017,889
583,624 1119,559 1660,460 2272,357 2561,299 3117,210 3394,162 5569,802 6017,917
622,620 1243,808 1684,443 2298,343 2610,289 3144,203 3447,153 5641,808 6182,808
650,640 1266,531 1701,443 2313,342 2620,296 3150,205 3451,155 5643,790 6182,838
Exp. 4 676,631 1291,529 1722,454 2328,346 2630,294 3156,205 3454,151 5645,790 6182,862
704,629 1313,505 1742,450 2340,344 2641,293 3163,202 3458,154 5646,790 6182,890
735,600 1334,518 1760,445 2354,344 2653,292 3169,199 3462,151 5647,789 6182,919

Table 2: Sname/file packet arrival times

In Figure 8 we show the relationship between the lease time period pro-
posed by the server and the actual renewal times. As aforementioned, the
renewal of the current lease occurs approximately in the middle of the lease
period. However, the client decides to deliberately delay or anticipate the
transmission. The reason for this is to avoid overloading the server when
there are many clients in the network.

Finally, a combination of all implemented techniques can be used for
covert channel construction. That means 1788 bytes/hour in the first period
and 898 bytes/hour in the following ones. Nevertheless, this would probably
increase the detection probability.

6.3. Detectability

In terms of detectability, the three proposed methods have the advantage
of being the first to use DHCP as a data carrier and moreover they strictly
follow the protocol specification. Still, a smart observer might be alerted by
some unusual patterns.

In our tests, none of the implementations have been detected by a regular
and updated installation of a well known IDS such as Snort (Snort, 2012). Al-
though active wardens could be deployed in order to eliminate covert channels
in the local network by introducing noise (up to the MRF, Minimal Requisite
Fidelity); this technique needs a previous protocol specification analysis, and
to the best of our knowledge, no active wardens have been specified for the
DHCP protocol yet. Nevertheless, in both cases, if DHCP-specific IDS rules
and an active warden are designed for covert channel detection, discovery
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rates would be sufficient enough for successfully identifying the presence of
our implemented covert channel. See Appendix A for a specific set of rules.

The zid implementation can be analysed using statistics or entropy. For
a random string zid, let H(xid) denote the entropy of zid. The entropy
measures the information or surprise of the different values of zid. For a
particular value, the surprise is —log(P(xid)). Thus, as it is well-known,
H(zid) = =), P(xid)log(P(xid)) which basically means that when the zid
field is filled with the start delimiter and clear bytes of the message to be
transmitted, the entropy values obtained will differ notably with respect
to random zid values. The only way of reverting this detection feature is
“mixing” or introducing noise to the xid bytes. One way of doing this is by
encrypting (but this means Alice and Bob need to share previously a short
secret key) all the information to be coded.

As confidentiality is not a requirement (at least not permanently), we
could send this short key, of a predefined size, before the (encrypted) start
delimiter such that the DHCP server can check whether it is a packet convey-
ing information. This change'? in the information coding process will harden
an zid field entropy analysis detection. Thus, the first packet sent by the
DHCP client will include the following:

120ther implementation techniques using hash functions are possible.

24



Xid = k|E(DELIM) (2)

In all cases, decreasing the leasing period would significantly increase
the covert channel capacity, but at the same time it would increase the de-
tection probability against global observers as defined in Section 3.1. In any
case, both (non-)detectability and capacity will be improved if a compression
method is used for the information to be sent (such as Huffman coding (Huff-
man, 1952)).

In summary, the xid implementation is stealthier than the other imple-
mented methods because the original code fills the zid field with random
data. On the other hand the sname/file method presents increased de-
tectability. There are some features that might arise suspicion on an expe-
rienced observer: in many implementations these fields are filled with zeros
when not used. Finally, the options method detectability might be improved
by reducing the size of the option payload or by using different options to
convey the data.

7. Conclusions

This paper presents an exhaustive analysis on the potential for covert
communications in various short-range communication protocols. In partic-
ular, we study NetBIOS, Bluetooth, and DHCP because they are broadly
used and have not been exploited for covert communications before. From
the analysis we conclude that DHCP, a protocol that is extensively used for
the configuration of IP-based devices, is the most suitable protocol to satisfy
the requirements imposed by our scenario.

This results in the implementation of three storage channels that we in-
tegrate on a tool called HIDE_DHCP. These solutions present distinguishing
features that makes them applicable to different circumstances. The main
factors influencing the selection among the devised methods are the channel
capacity and its detectability, which is leveraged by the fact that this is the
first covert channel implementations based on DHCP. Moreover, the normal
operation of the protocol is not altered by the subliminal channel.

Note that even when we use three fields for conveying information, the
reached capacity is significantly smaller than in some previous covert chan-
nels. Nevertheless, a small covert channel capacity is not synonymous of lack
of usability or importance because, as it is discussed by Moskowitz and Kang
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(1994), in its small message criterion, the capacity is not important if the
message to be transmitted is small.

Several information hiding techniques have been discussed for DHCP but
only a few of them have been implemented. We have further analyzed the
advantages and limitations as well as possible means of improvement. Our
current work goes in this direction. Although we have performed some de-
tectability tests with out-of-the-box intrusion detection solutions, much work
can be done in this direction. We have constructed several basic Snort rules
for detecting our implemented covert channel but a complete packet of rules
for DHCP covert channels is to be provided (e.g. DHCP traffic rate detec-
tion).

We are taking the first steps towards porting our implementation into
mobile scenarios. More importantly in recent mobile devices which integrates
DHCP clients for wifi connections and existing malware apps, the existence
of covert channels are a (theoretical) reality. This would increase the risk of
information leakage for mobile users which greatly raises severe privacy risks.
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Appendix A. Snort rules for detecting DHCP covert channels

In this section we show some rules which may be useful to signal the
presence of covert channels on DHCP!3. However, the main limitation is
that these rules may lead to false positive cases. At least we have created a
rule for each of the three different methods of covert channels. The first rule
tries the detection on the default delimiter within the xid field:

alert udp $HOME_NET 68 -> any 67 (msg: "DHCP xid covert channel"; \
pcre: "/ (. | \ n) {4} [0-4] ts \ / / A"; sid: 1000000, rev : 1 ;)

13See Snort manual for rules writing in http://manual.snort.org/

26



This rule checks originated traffic in port 68 from a device in the local
network addressed to any other device in port 67 (including 255.255.255.255),
that is, originating from a client to a DHCP server. The payload of the
packets must match the perl regular expression, defined with the keyword
“pcre”.  This expression reads any 4 characters (. | \n) and then find a
numeric value between 0 and 4 plus the delimiter, starting from the beginning
of the payload. The user can change the delimiter value. In this case, these
rules will not detect the channel presence.

The following rule searches for the sname and file method. In this case
the size of the message to be sent, along with the delimiters, is shorter than
the available size in both fields.

alert udp $HOMENET 68 -> any 67 (msg: "DHCP sname-file covert channel"; \
content: "| 00 | / st", offset: 44, depth: 4; \

content: "/ st"; within: 188, distance: 0; \

sid: 1000001, rev: 1 ;)

In this case the delimiter is sought after byte 44, which is when sname field
begins. At this point it is checked whether the next four bytes correspond
exactly to the null character followed by the delimiter, and if a match occurs,
the next delimiter is searched in the 188 following bytes. The first delimiter
detection may be sufficient due to the characteristics of the information usu-
ally contained in these fields. On the other hand, this rule will again not be
useful if the user decides to create a new channel delimiter.

Lastly we present a rule that allows the detection of a DHCP covert
channel which makes use of the option 224 (as described in Section5.3). In
this particular case, the rule set identifies the channel traffic only in the case
of a message larger than 255 bytes.

alert udp $HOMENET 68 -> any 67 (msg: "DHCP option covert channel"; \
content: "| ff e0 |", offset: 240; \
isdataat: 255, relative; sid: 1000002, rev: 1 ;)

This rule tries to find the tag and length; i.e., values 224 and 255 from the
area corresponding to the options field. Besides, if the content is specified,
from that position on must be at least 255 bytes of data so that the rule is
triggered. As in previous cases, this rule is only useful if the option used for
the channel creation is 224 (otherwise the channel will not be detected).

All these rules are useful in order to determine the existence of covert
channels. In the first two methods, even if only the start delimiter arrives to
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the IDS the provided rules are triggered. The presence of a unique delimiter
should not be reason enough to alert the user as there is the possibility,
however remote, that an unmodified client generates, for instance, a random
xid that matches the delimiter value being sought, thereby giving rise to
a false positive. Consequently, in order to determine the existence of covert
channels with certainty (i.e. the implemented covert channel evasion rate will
be null), we need to use preprocesors (Stream5 UDP for session tracking).
These preprocessors together with Snort features like flowbits provides the
IDS with “memory”, therefore being able to detect delimiters which arrive
in different UDP packets. Also, Activate/Dynamic rules could be used in
a similar way but still if the delimiters are dynamic the detection might be

difficult.
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