
International Conference on Computer Systems and Technologies - CompSysTech’09

Security Assurance during the Software Development Cycle

Isaac Agudo, José L. Vivas and Javier López

Abstract: Assurance has been a major topic for critical systems. Assurance is usually associated with

safety conditions but has also an important role for checking security requirements. Security is best assured
if it is addressed holistically, systematically, and from the very beginning in the software’s development
process. We propose to integrate assurance and system development by letting the different stages of the
system development life-cycle be mapped to the structure of the assurance case.

Key words: Security Engineering, Security Assurance, Assurance Cases, Common Criteria.

INTRODUCTION

Assurance is confidence that an entity meets its requirements based on evidence provided
by the application of assurance techniques. The assurance process should provide
credible evidence that justifies a certain amount of confidence that the system meets its
initial requirements.

Security assurance refers to security requirements. Assurance must provide evidence that
the number of vulnerabilities in a software, including the presence of features that may be
intentionally exploited by malicious agents, are reduced to such a degree that it justifies a
certain amount of confidence that the security properties of the software meet the
established security requirements, and that the degree of uncertainty involved has been
reduced. The focus here is on the minimisation, not elimination, of vulnerabilities, since
there can never be absolute certainty that these have been fully eliminated.

Many researchers hold that security and security assurance should be an integral part of
the development process [7], and that security is best assured if it is addressed holistically,
systematically, and from the very beginning in the software’s development process.
Hence, good systems engineering methods, techniques and practices might be seen in
themselves as factors that increase confidence, and should therefore be treated as an
integral part of an assurance process.

Assurance techniques may be informal, semiformal, or formal. Existing formal techniques
are hard to apply and, although precise, are often inaccurate, i.e. do not target the real
problem. Informal techniques, on the other hand, are often very little rigorous, but
necessary. We propose to concentrate on semiformal methods as much as possible,
making use of informal techniques as a complement or when semiformal techniques are
not suitable or available, and formal techniques whenever they exist and are feasible.

Requirements can be functional or non-functional. Functional requirements describe
interactions between the system and its environment, whereas non-functional
requirements are constraints or restrictions limiting the design and implementation
choices. Security is often seen as a non-functional requirement. However, non-functional
requirements are typically not related, at least directly, to the functionality of the system,
hence the attribute non-functional, but this is clearly not the case of the requirements
related to security. Some of the security requirements are clearly functional in character,
e.g. access control and authentication, and other requirements involve, either by design or
as a side-effect, constraints to the functionality of the system, and may therefore be
described as anti-functional rather than non-functional. Some approaches do justice to this
feature, e.g. so called misuse or abuse cases [3], implicitly recognising the close
relationship between security and functionality, since use cases are intended to express

II.7-1

J. L. Vivas, I. Agudo, and J. Lopez, “Security Assurance During the Software Development Process”, International Conference on Computer
Systems and Technologies (CompSysTech09), pp. 11.7.1-11.7.6, 2009.
http://doi.org/10.1145/1731740.1731763
NICS Lab. Publications: https://www.nics.uma.es/publications

International Conference on Computer Systems and Technologies - CompSysTech’09

the functionality requirements of a system, and many security vulnerabilities arise from the
(mis)use of this functionality. Hence, eliminating those vulnerabilities often amount to
reducing the intended or non intended functionality of the system.

The challenge here, from the assurance point of view, is that by their very nature it can
never be assured that all the vulnerabilities of a system have been targeted or eliminated,
since it is not possible to list every possible sequence of actions by brute force, nor are
there efficient methods that may formally prove the security of a system. Testing is not
enough in this context. Security testing methods are immature and testing by itself cannot
gauge security as it is better suited to target the functional properties of a system and
random errors rather than the vulnerabilities that can be exploited by malicious behaviour.
In fact, evaluations methods such as the Common Criteria have been criticised for
focusing on assuring mainly the functional security requirements of a system or product
[5]. Hence, the adoption of sound system development practices might be more
confidence building than testing and evaluation. Likewise, letting assurance be an integral
part of system development will help in bringing on the adoption of sound development
practices. Hence, what we are proposing here is in fact an integration of assurance with
security engineering.

It must be noted in this context that security assurance requirements are currently almost
always ignored in modern system development [6], which typically focuses on functional
requirements. We have thus very little to fall back upon when it comes to best practices in
the field. However, due to its importance, software assurance has become a very active
area of research, and some advances have been reported in the latest 10 years. During
this period, a high number of standards, techniques, methodologies, tools and initiatives
have seen the light of day.

ASSURANCE BASED DEVELOPMENT (ABD)

Assurance Based Development (ABD) of critical systems [4] is an assurance
methodology based on structured security assurance cases [2]. ABD has been recently
proposed as an approach by which assurance is created throughout a system’s
development process. ABD allows developers to evaluate security goals during the
development process. System development and assurance are in this way integrated.
Criteria for the confidence of a development choice are provided at the time of choice, thus
facilitating detection of potential security and assurance difficulties at an early stage of
system development. Early developing of assurance cases can improve the development
process by enabling the establishment of assurance and evidence requirements at every
stage of the software development life cycle. In this way, security considerations can
inform the requirements, design, architectural and implementations choices of a system
development.

Assurance cases

Assurance case is the central concept of ABD. Assurance cases has been defined as “a
documented body of evidence that provides a convincing and valid argument that a
specified set of critical claims regarding a system’s properties are adequately justified for a
given application in a given environment.” [1] It is not a method in competition with other
security certification or evaluation methods, tools, or techniques. Security assurance cases
“provide a general framework in which to incorporate and integrate existing and future
certification and evaluation methods into a unified argument and evidentiary structure.” [2]
Assurance cases should be developed alongside the software component or system itself,

II.7-2

International Conference on Computer Systems and Technologies - CompSysTech’09

and the information they contain should depend on the level of assurance required at each
life cycle phase. A security assurance case is a document that changes as the system it
documents changes.

A security assurance case presents arguments showing how a top-level claim is supported
by objective evidence, and considers people, processes, and technology. Assurance
cases typically consist of at least three parts:

1. Claims. Claims embody what is to be shown. Top-level claims should “provide the
‘take-home’ message for the reviewers and should convince them that the required
attributes have been satisfied.” [2]

2. Arguments. Arguments show how a top-level claim is supported by evidence. An
argument gives evidence about a claim based upon a set of other claims or sub-
claims, until we reach a point where evidence is immediate

3. Evidence. Evidence may include testing, code review, formal mathematical proofs,
arguments about the nature of the development process, the reputation of the
development organisation, and the trustworthiness of the developers, among
others.

An assurance case shows how a top-level claim is supported by lower level claims, which
recursively are shown to be supported by other subclaims.

The consequences of a security breach will affect how much effort is put into developing
arguments and claims, and some cases may therefore require a higher standard of
evidence and argumentation than others. Security cases “provide also a framework for
evaluating the impact of changes to the system and can help ensure that changes do not
adversely impact security.” [2]

Evidence may consist of any confidence enhancing element: programmer training
credentials, results of the code review, testing results. Confidence in the argument
depends on how convincing the argument and the evidence are in our eyes. Further
evidence may be nevertheless required whenever we find the current one insufficient.

Claims should be stated succinctly and be unambiguous, and further information can be
provided in an optional element called context. Optionally, the strategy used to develop a
sub-claim from a claim can be explicitly stated, thus providing an additional cue to
understand the form that an argument is going to take as well as information on how to
substantiate a stated claim. Other optional elements, which we ignore here, are
justifications and assumptions.

Assurance cases and the Common Criteria (CC)

The Common Criteria is an international standard for the evaluation of security products
and systems. There have been proposals to use CC artefacts, such as Security Targets,
as a basis for the definition software assurance cases. The security case is regarded as a
more general framework than the CC, as the results of CC evaluations could be placed as
evidence of assurance. [2] However, CC has been criticized for not providing “a
meaningful basis for documentation of assurance cases that can be used to verify security
as a property of software, but rather to prove the correctness of the security functionality
provided by system components.” [5]

II.7-3

International Conference on Computer Systems and Technologies - CompSysTech’09

A Security Target (ST) is the central CC document that specifies security evaluation
criteria to substantiate the claims for the product's security properties. An ST may be
described as a security case that gives a description of a security problem in terms of the
product’s description, threats, assumptions, security objectives, security functional
requirements, and security assurance requirements. However, a CC evaluation indicates
the degree of confidence that can be achieved, at a system level view, about the
conformance of the security functions to the security policy with respect to the claims
made in the ST. However, nothing is assured with respect to robustness against attacks
or lack of exploitable vulnerabilities in the implementation of security functions at a
component level view. [5]

In CC the required evidence is specified but, in contrast to assurance cases, the
arguments linking this evidence to the goals and requirements of a system are commonly
not given explicitly. Moreover, unlike CC evaluations, an assurance case is well suited to
be maintained over time as a system development artefact. Assurance cases can thus
evolve along with the system and in this way reflect its current state and configuration.

SECURITY ENGINEERING AND ASSURANCE

In accordance with the main guidelines of the ABD approach, we believe that assurance
should address the requirements, design, architecture, and implementation issues of the
system. We propose here an integration of security engineering and ABD with the help of
assurance cases. The idea is to integrate assurance and system development by letting
the different stages of the system development life-cycle be reflected in the structure of the
assurance case, thus turning assurance cases themselves into a system development
tool. This is done by identifying assurance claims with high level requirements and system
goals, and building assurance case trees where the nodes at the highest levels
correspond to system requirements devoid of references to architectural concepts,
followed by lower level nodes denoting assurance claims that now refer mainly to design
and architectural entities, and at a subsequently lower levels by letting corresponding
assurance claims refer to concepts related to later stages of development, e.g.
implementation or deployment. Hence, in the context of assurance cases requirements are
identified with claims, the only difference being that whereas a requirement is stated in the
subjunctive mode (e.g. confidentiality SHOULD BE enforced by the system), a claim is
enunciated in the indicative mode (e.g. confidentiality IS enforced by the system).

In the requirements phase, the high-level security requirements or goals are established,
and those can be further refined throughout the whole development process. In general, at
the requirements phase the assurance process should target the definitions, omissions,
mistakes, inconsistencies, completeness and soundness of the established requirements.

Following the requirements phase, during the design phase of system development the
assurance techniques must provide evidence that the design meets the high-level security
requirements, principles and goals established in the requirements phase. Claims should
be made about the correctness of the design with respect to the high-level requirements,
and the result should be a new design enriched this time with security features, thus
facilitating the later implementation of the security requirements.

Later, during the ensuing implementation phase, implementation assurance should provide
evidence that the implementation is consistent with the security design requirements by
establishing implementation claims that guarantee that the implementation conforms to the

II.7-4

International Conference on Computer Systems and Technologies - CompSysTech’09

design. Testing and proof of correctness techniques may be used in this assessment.
Later phases, such as deployment, should be treated similarly.

Hence, goals and requirements are intended to become the high level claims of the
system. These goals should later be reduced throughout the different phases of
development into lower level goals. As a result, an assurance case is built where lower
level claims are given as evidence that higher level ones have been met, and arguments
are given linking this evidence to the corresponding higher level claims. In this way, a
hierarchy of goals arises that encompasses different levels of abstraction corresponding to
different phases of system development, hence enabling also linking and tracing.
Assurance links are established and documented between assurance arguments and
development artefacts at every phase of development.

The choice of strategy for deriving subclaims from claims that correspond to an earlier
phase of development (e.g. deriving design claims from system goals or implementation
claims from design claims) is very important in our approach. This strategy should be
based on a vulnerability analysis of the system and its components at each phase of
development. For instance, if the requirements are given in the form of use cases, the
strategy for deriving architectural or design claims from the requirements should include an
analysis of the eventual vulnerabilities in the functionality of these use cases in the spirit of
e.g. abuse or misuse cases. This analysis should then give rise to architectural claims that
support the initial requirements in a way that is specific for each kind of system. At each
phase of development the basic functionality of the system can be similarly analysed with
regard to possible threats and vulnerabilities, and new claims derived until we reach the
level of evidence. The end product of this approach should be an assurance case that
provides a high degree of confidence about the robustness of the deployed system against
attacks and the lack of exploitable vulnerabilities in the implementation of the security
functions.

CONCLUSIONS AND FUTURE WORK

We have proposed the integration of security engineering and assurance based
development with the help of assurance cases. This is done by integrating assurance and
system development, in fact turning assurance cases themselves into a system
development tool. In this methodology, requirements and system goals become high level
claims in the assurance case tree, which is subsequently extended in a way that reflects
each stage of development, later stages corresponding to lower level claims in the
assurance tree. Strategies for deriving subclaims from parent claims can be based on the
strategies for deriving more concrete views and models of the system under development,
and should include an extensive vulnerability and risk analysis of the system view at hand.
The subclaims produced in this way at one stage of development should be regarded as
requirements for the subsequent stages. For reuse, patterns of decomposition of claims
into subclaims for different types of systems and security requirements might turn out to be
a useful by-product. The proposed methodology, which we believe can be advantageously
integrated into software development methods such as Model-Driven Development, is now
being applied in the development of a platform for online communities.

REFERENCES
[1] R E Bloomfield, P G Bishop, C C M Jones, P K D Froome, ASCAD—Adelard

Safety Case Development Manual, Adelard 1998, ISBN 0 9533771 0 5.

II.7-5

International Conference on Computer Systems and Technologies - CompSysTech’09

[2] J. Goodenough, H. Lipson, and C. Weinstock: Arguing Security - Creating Security
As-surance Cases, Carnegie Mellon University, 2007. Available at
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/assurance/643-BSI.html
(last accessed September 19th, 2008).

[3] P. Hope, G. McGraw and A. I. Antón: Misuse and Abuse Cases: Getting Past the
Positive. IEEE Security and Privacy, 2:3, pp. 90-92, May-June, 2004.

[4] E. A. Strunk and J. C. Knight: The Essential Synthesis of Problem Frames and
Assurance Cases. In: Proceedings of 2nd International Workshop on Applications and
Advances in Problem Frames, co-located with 29th International Conference on Software
Engineering, Shanghai, May 2006.

[5] Software Security Assurance: A State-of-the-Art Report (SOAR) July 31th, 2007.
[6] J. Wil and J. Gustavsson : Security requirements – a field study of current

practice. In: E-Proceedings of the Symposium on Requirements Engineering for
Information Security, 2005.

[7] C. Woody: Process Improvement Should Link to Security. SERG 2007 Security
Track Recap. Pitts-burgh, PA: Software Engineering Institute, Carnegie Mellon University,
2007.

ABOUT THE AUTHOR
Postdoctoral Research Assitant. Isaac Agudo, PhD, Department of Computer

Science, University of Malaga (Spain). Phone: (+34)952134186, email: isaac@lcc.uma.es
Postdoctoral Research Assitant. Jose L. Vivas, PhD, Department of Computer

Science, University of Malaga (Spain). Phone: (+34)952134186, email: jlvivas@lcc.uma.es
Professor. Javier Lopez, PhD, Department of Computer Science, University of

Malaga (Spain). Phone: (+34)952134186, email: jlm@lcc.uma.es

II.7-6

