Integrating OpenID with proxy re-encryption to enhance privacy in cloud-based identity services

David Nuñez, Isaac Agudo, and Javier Lopez

Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain Email: dnunez@lcc.uma.es

December 4, 2012

イロト イポト イヨト イヨト

Outline

Privacy-preserving IDaaS system

1. Introduction Motivation Proposal

2. Support technologies OpenID Proxy Re-Encryption

3. Privacy-preserving IDaaS system General overview System operation Implementation Analysis

4. Conclusions

(日) (四) (三) (三)

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Introd	uction			

Identity Management is a ubiquitous service

■ Costly ⇒ specific applications and personnel

Identity Management as a Service (IDaaS)

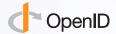
- Cloud computing solution to this problem
- Organizations can outsource their IdM services to the cloud
- Cloud providers specialized in Identity Management
- New business opportunities to cloud providers

Outline	Introduction ●○	Support technologies	Privacy-preserving IDaaS system	Conclusions
Motiv	ation			

- Classic problem of cloud computing
 The user loses the control of his data
- Now we are talking about identity data...
 ⇒ Data protection laws and regulations
- Current solution: Service Level Agreements (SLAs) ⇒ It is just an agreement not a **technical safeguard**
- Trust problem \Rightarrow Users are obliged to trust the provider
- Goal: To define technical safeguards that allow an IdM service without compromising users' data

Proposal: Privacy-preserving IDaaS

- Privacy-preserving IDaaS system
- Based in OpenID Attribute Exchange and Proxy Re-Encryption
- Identity attributes are encrypted by the user and decrypted by the requester
- The Identity Provider (IdP) stores encrypted attributes ⇒ Still capable of offering an identity service
- First proposal that tackles this problem



イロト イポト イヨト イヨト

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Openl	D: Overvie	W		

Decentralized model for identity management

- User's identity is represented by an OpenID identifier
- Current version is OpenID 2.0
- Defines an extension for attribute exchange ⇒ OpenID Attribute Exchange 1.0

Outline	Introduction 00	Support technologies 0●0000	Privacy-preserving IDaaS system	Conclusions

OpenID Authentication protocol

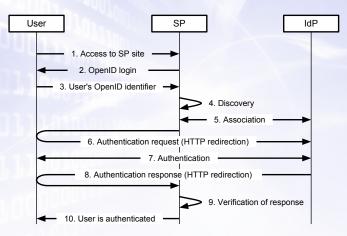


Figure : OpenID Authentication sequence diagram

・ 日マ ・ 雪マ ・ 日マ

Outline Introduction

Support technologies

Privacy-preserving IDaaS system

Conclusions

OpenID: Problems

- Identity information assurance
- Lack of trust framework
- Privacy

・ロト ・四ト ・ヨト ・ヨト

A PRE scheme is a public-key encryption scheme that permits a proxy to transform ciphertexts under Alice's public key into ciphertexts under Bob's public key.

The proxy needs a re-encryption key $r_{A \rightarrow B}$ to make this transformation possible.

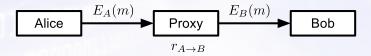


Figure : Proxy Re-Encryption flow

イロト 人間 ト イヨト イヨト

 Outline
 Introduction
 Support technologies
 Privacy-preserving IDaaS system

 00
 00000
 0000000
 0000000

Proxy Re-Encryption: AFGH scheme

Global parameters:

- $\mathbb{G}_1, \mathbb{G}_2$ are groups of prime order q
- $e: \mathbb{G}_1 imes \mathbb{G}_1 o \mathbb{G}_2$ is a bilinear pairing

$$g \in \mathbb{G}_1, Z = e(g,g) \in \mathbb{G}_2$$

Primitives:

- Key Generation: $KG() = (s_A, p_A)$
- Re-Encryption Key Generation: $RKG(s_A, p_B) = r_{A \rightarrow B}$
- First-level Encryption: $E_1(m, p_A) = c_1$
- Second-level Encryption: $E_2(m, p_A) = c_2$
- Re-Encryption: $R(c_2, r_{A \rightarrow B}) = c_1$
- First-level Decryption: $D_1(c_1, s_A) = m$
- Second-level Decryption: $D_2(c_2, s_A) = m$

・ロト ・雪ト ・ヨト・

 Dutline
 Introduction
 Support technologies
 P

 00
 00000●
 0

Privacy-preserving IDaaS system

Conclusions

Proxy Re-Encryption: AFGH scheme

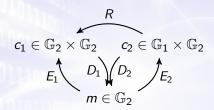


Figure : Transformations between plaintext and ciphertext spaces

Properties:

- Unidirectional
- Unihop
- Collusion-resistant

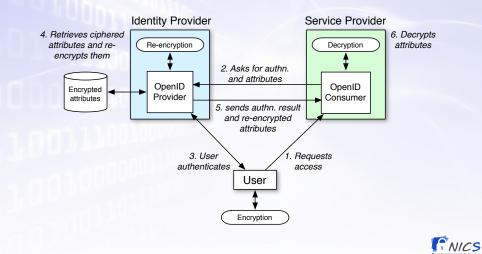
・ロト ・四ト ・ヨト ・ヨト

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline Introduction Support technologies Ocococo

Conclusions

Privacy-preserving IDaaS system: assumptions


Honest-but-curious provider: The cloud provider will respect protocol fulfillment, but will try to read users' data

Existing trust relationship between users and requesters

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

(日)、

э

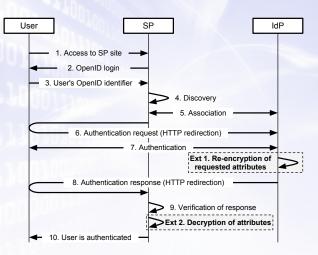


Figure : Modified OpenID sequence

(日)、

Outline Introduction

Privacy-preserving IDaaS system 000000000

Implementation details

We have implemented:

- OpenID Provider and Consumer using the OpenID4Java library¹
- AFGH Proxy Re-Encryption scheme using Java Pairing-Based Cryptography library (jPBC)²

¹http://code.google.com/p/openid4java ²A. D. Caro, http://gas.dia.unisa.it/projects/jpbc < = > < = > < = > < = >

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Econo	mic analys	is		

- Most of proposals do not analyze their economic impact
- Cryptographic operations have an economic cost due to computation, communication, etc.
 ⇒ Cloud provider incurs in expenses due to energy
 - consumption, personnel, ...
- Our estimations are based on a research from Chen & Sion³
 ⇒ They give estimations for computation, storage and
 communication costs, expressed in *picocents* (1 picocent
 = 10E⁻¹² USD cent)
- We estimate the number of CPU cycles to give an approximation of the costs

³Y. Chen and R. Sion, "On securing untrusted clouds with cryptography" Proc. 9th annual ACM workshop on Privacy in the electronic society

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system ○○○○○○●○○
Econom	nic analysis	: time measure	ements

Table : Performance results for the main operations

Operation	Time (ms)	Cycles
Generation of global parameters	7279.98	1.94E+10
Generation of a secret key	0.01	1.86E+04
Generation of a public key	20.05	5.33E+07
Generation of re-encryption key	139.66	3.72E+08
Encryption	23.31	6.20E+07
Re-encryption	90.09	2.40E+08
Decryption	14.28	3.80E+07

 Outline
 Introduction
 Support technologies
 Privacy-preserving IDaaS system
 Control

 Control
 Control
 Control
 Control
 Control
 Control

Economic analysis: costs

Table : Costs in picocents for the main operations

Operation	Cost per operation	Operations per cent	
Encryption	4.34E+08	2304	
Re-encryption	4.79E+08	2087	
Decryption	5.70E+08	1755	

・ロト ・四ト ・ヨト ・ヨト

 Outline
 Introduction
 Support technologies
 Privacy-preserving IDaaS system
 Conclusions

 Conclusions
 Conclusions
 Conclusions
 Conclusions
 Conclusions

Economic analysis: example scenario

- IDaaS provider that handles 1 million attribute requests per day ⇒ 1 million re-encryptions per day
- Approx. 2000 USD per year

 Reasonable cost for an average-sized company, considering that their information is encrypted at the cloud provider

イロト イポト イヨト イヨト

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Concl	usions			

IDaaS is a promising paradigm for organizations

 Cloud providers are in a privileged position to gain information about their users

 We need technical safeguards, such as those based in cryptography, to ensure users' privacy

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Concl	usions			

- In this work, we describe an IDaaS system that handles encrypted attributes and still provides an identity service
- Our system is based in OpenID Attribute Exchange and Proxy Re-Encryption
- The cloud identity provider transforms encrypted attributes from the original users to ciphertexts for the requesters using re-encryption
- Implementation and economic analysis is provided

Outline	Introduction 00	Support technologies	Privacy-preserving IDaaS system	Conclusions
Futur	e work			

- More secure and efficient proxy re-encryption schemes
- Improve trust and assurance
- Other identity management protocols (e.g., SAML)
- Evaluation in a real cloud setting

・ロン ・雪 と ・ ヨ と ・ ヨ と

Outline

ntroductio

Support technologies

Privacy-preserving IDaaS system

Conclusions

Thank you!

・ロト ・四ト ・ヨト ・ヨト