
Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt
An Efficient Proxy Re-Encryption Scheme based on NTRU

David Nuñez, Isaac Agudo, and Javier Lopez

Network, Information and Computer Security Laboratory (NICS Lab)
Universidad de Málaga, Spain

Email: dnunez@lcc.uma.es

ACM AsiaCCS 2015 – Singapore

mailto:dnunez@lcc.uma.es


Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

1. Proxy Re-Encryption

2. NTRU

3. NTRUReEncrypt

4. PS-NTRUReEncrypt

5. Experimental results

6. Conclusions



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Proxy Re-Encryption: Overview

A Proxy Re-Encryption scheme is a public-key encryption
scheme that permits a proxy to transform ciphertexts under
Alice’s public key into ciphertexts under Bob’s public key

The proxy needs a re-encryption key rA→B to make this
transformation possible, generated by the delegating entity

Proxy Re-Encryption enables delegation of decryption rights



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Syntax of Bidirectional Proxy Re-Encryption

Definition. A bidirectional proxy re-encryption scheme is a tuple
of algorithms (Setup,KeyGen, ReKeyGen,Enc,ReEnc,Dec):

KeyGen()→ (pkA, skA)

ReKeyGen(skA, skB)→ rkA→B

Enc(pkA,M)→ CA

ReEnc(rkA→B, CA)→ CB

Dec(skA, CA)→M



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Correctness

Definition: Multihop Correctness. A bidirectional PRE scheme
(Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) is multihop correct
with respect to plaintext space M if:

(Encrypted Ciphertexts) For all (pkA, skA) output by KeyGen
and all messages M ∈M, it holds that:

Dec(skA,Enc(pkA,M)) = M

(Re-Encrypted Ciphertexts) For any sequence of pairs
(pki, ski) output by KeyGen, with 0 ≤ i ≤ N , all
re-encryption keys rkj→j+1 output by ReKeyGen(skj , skj+1),
with j < N , all messages M ∈M, and all ciphertexts C1

output by Enc(pk1,M), it holds that:

Dec(skN ,ReEnc(rkN−1→N , ...ReEnc(rk1→2, C1))) = M



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Bidirectional CPA-security game

Let us assume:

k is the security parameter

A is a polynomial-time adversary

H, C are the sets of indices of honest and corrupt users

The IND-CPA game consists of an execution of A with the
following oracles, which can be invoked multiple times in any
order, subject to the constraints below:



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Bidirectional CPA-security game

Phase 0:

The challenger obtains global parameters params← Setup(1k) and
initializes sets H, C to ∅.
The challenger generates the public key pk∗ of target user i∗, adds
i∗ to H, and sends pk∗ to the adversary.

Phase 1:

Uncorrupted key generation Ohonest: On input an index i, where
i 6∈ H ∪ C, the oracle obtains a new keypair (pki, ski)← KeyGen()
and adds index i to H. The adversary receives pki.

Corrupted key generation Ocorrupt: On input an index i, where
i 6∈ H ∪ C, the oracle obtains a new keypair (pki, ski)← KeyGen()
and adds index i to C. The adversary receives (pki, ski).



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Bidirectional CPA-security game

Phase 2:

Re-encryption key generation Orkgen: On input (i, j), where
i 6= j, and either i, j ∈ H or i, j ∈ C, the oracle returns
rki→j ← ReKeyGen(ski, skj).

Challenge oracle Ochallenge: This oracle can be queried only
once. On input (M0,M1), the oracle chooses a bit b← {0, 1}
and returns the challenge ciphertext C∗ ← Enc(pk∗,Mb),
where pk∗ corresponds to the public key of target user i∗.

Phase 3:

Decision: A outputs guess b′ ∈ {0, 1}. A wins the game if
and only if b′ = b.



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Other remarks

Static corruption model

We only allow queries to Orkgen where users are either both
corrupt or both honest

Otherwise, these queries would corrupt honest users

Re-encryption oracle is not necessary in CPA



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUEncrypt: Overview

Originally proposed by Hoffstein, Pipher and Silverman

One of the first PKE schemes based on lattices

NTRU Encryption is very efficient, orders of magnitude faster
than other PKE schemes

IEEE Standard 1363.1-2008 and ANSI X9.98-2010

It is conjectured to be based on hard problems over lattices

Post-quantum cryptography

It lacks a formal proof in the form of a reduction to a hard
problem (i.e. not provably-secure)



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUEncrypt: Basics

Defined over the quotient ring RNTRU = Z[x]/(xn − 1),
where n is a prime parameter

Other parameters of NTRU:

Integer q, which is a small power of 2 of the same order of
magnitude than n
Small polynomial p ∈ RNTRU , which usually takes values
p = 3 or p = x+ 2

In general, operations over polynomials will be performed in
RNTRU/q or RNTRU/p



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUEncrypt: Key Generation

Private key: sk = f ∈ RNTRU
f is chosen at random, with a determined number of
coefficients equal to 0, -1, and 1

f must be invertible in RNTRU/q and RNTRU/p⇒ f−1q , f−1p

For efficiency, f can be chosen to be 1 mod p

Public key: pk = h = p · g · f−1q mod q

g ∈ RNTRU is chosen at random



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUEncrypt: Encryption and Decryption

Encryption:

plaintext M from message space RNTRU/p
ciphertext C = h · s+M mod q

noise term s is a small random polynomial in RNTRU
Decryption:

Compute C ′ = f · C mod q

Compute m = f−1p · C ′ mod p

Why does it work?

C ′ = f · (p · g · f−1q · s+M) mod q = p · g · s+ f ·M mod q

This equation holds if f · C is “small enough”

f−1p · (����p · g · s+ f ·M) mod p = f−1p · f ·M mod p = M

If f = 1 mod p, then the last step is simply m = C ′ mod p



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt

We extended NTRUEncrypt to support re-encryption ⇒
NTRUReEncrypt

New requirement: secret polynomial f = 1 mod p

Not for efficiency reasons, but necessary to correctly decrypt
re-encrypted ciphertexts



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Key Generation

Private key: skA = fA ∈ RNTRU
fA is chosen at random, with a determined number of
coefficients equal to 0, -1, and 1

fA must be invertible in RNTRU/q ⇒ f−1A
Since f is chosen to be 1 mod p, its inverse mod p is not
necessary

Public key: pkA = hA = p · gA · f−1A mod q

gA ∈ RNTRU is chosen at random



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Encryption and Decryption

Encryption:

plaintext M from message space RNTRU/p
ciphertext CA = hA · s+M mod q

noise term s is a small random polynomial in RNTRU
Decryption:

Compute C ′A = f · CA mod q

Compute m = C ′A mod p



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Re-Encryption Key Generation

Re-Encryption Key Generation:

Input: secret keys skA = fA and skB = fB

The re-encryption key between users A and B is

rkA→B = skA · sk−1B = fA · f−1B

Three-party protocol, so neither A, B nor the proxy learns any
secret key.

A selects a random r ∈ RNTRU/q
A sends r · fA mod q to B and r to the proxy
B sends r · fA · f−1B mod q to the proxy
The proxy computes rkA→B = fA · f−1B mod q



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Re-Encryption

Re-Encryption

Input: a re-encryption key rkA→B and a ciphertext CA

Samples a random polynomial e ∈ RNTRU
Output re-encrypted ciphertext

CB = CA · rkA→B + pe

The noise e prevents B from extracting A’s private key



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Re-Encryption

Why does it work?

Re-encrypted ciphertext:

CB = CA · rkA→B + p · e mod q

= (p · g · f−1A · s+M) · fA · f−1B + p · e mod q

= p · g · f−1B · s+ fA · f−1B ·M + p · e mod q

Decrypting a re-encrypted ciphertext:

fB · CB mod p =((((
(((((p · g · s+ p · e) + fA ·M mod p

= fA ·M mod p

= M



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Re-Encryption

Limited Multihop:

The scheme does not support unlimited re-encryptions

The noise e added during the re-encryption accumulates on
each hop, until eventually, decryption fails

This depends heavily on the choice of parameters



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Analysis

Computational costs:

The core operation in NTRU is the multiplication of
polynomials

It can be done in O(n log n) time using the Fast Fourier
Transform (FFT)

Encryption, decryption and re-encryption only need a single
multiplication



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Analysis

Space costs:

Keys and ciphertexts are polynomials of size O(n · log2 q) bits

Ciphertext expansion is O(log2 q)

Other lattice-based schemes have ciphertexts of size O(n2)

Table : Comparison of space costs (in KB)

Size Aono et al. NTRUReEncrypt

Public keys 60.00 1.57

Secret key 60.00 1.57

Re-Encryption key 2520.00 1.57

Ciphertext 0.66 1.57



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

NTRUReEncrypt: Analysis

Bidirectional: Given rkA→B = fAf
−1
B , one can easily compute

rkB→A = (rkA→B)−1 = fBf
−1
A

Limited multihop

Not collusion-safe: Secret keys can be extracted from the
re-encryption key if the proxy colludes with a user involved

fA = rkB→A · fB

This is common in interactive bidirectional PRE schemes



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

PS-NTRUReEncrypt

A second proxy re-encryption scheme, called
PS-NTRUReEncrypt

Provable secure under the Ring-LWE assumption

Extends the NTRU variant proposed by Stehlé and Steinfeld
[Eurocrypt’11], which is proven IND-CPA secure



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Preliminaries

Φ(x) is the cyclotomic polynomial xn + 1, with n a power of 2

q is a prime integer such that q = 1 mod 2n

R is the ring Z[x]/Φ(x)

Rq = R/q = Zq[x]/Φ(x)

R×q is the set of invertible elements of Rq



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

The Ring-LWE problem

The Ring Learning With Errors (Ring-LWE) problem is a hard
decisional problem based on lattices

We use a variant of this problem proposed by Stehlé and Steinfeld.

s ∈ Rq and ψ a distribution over R×q
A×s,ψ is the distribution that samples pairs of the form (a, b)

a is chosen uniformly from R×q
b = a · s+ e, for some e sampled from ψ

The Ring-LWE problem is to distinguish distribution A×s,ψ from a

uniform distribution over R×q ×Rq
The Ring-LWE assumption is that this problem is computationally
infeasible



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

PS-NTRUReEncrypt: Setup and Key Generation

Setup:

Global parameters: (n, q, p, α, σ)

Key Generation:

DZn,σ is a Gaussian distribution over Zn with standard
deviation σ

The keys are computed as follows:

1. Sample f ′ from DZn,σ

Let fA = 1 + p · f ′; if (fA mod q) 6∈ R×q , resample
2. Sample gA from DZn,σ; if (gA mod q) 6∈ R×q , resample

3. Compute hA = p · gA · f−1A
4. Return secret key skA = fA and pkA = hA



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

PS-NTRUReEncrypt: Encryption and Decryption

Encryption:

Input: public key pkA and message M ∈M
Sample noise polynomials s, e from a distribution Ψα

Output ciphertext:

CA = hAs+ pe+M ∈ Rq

Decryption:

Input: secret key skA = fA and ciphertext CA

Compute C ′A = CA · fA
Output the message M = (C ′A mod p) ∈M



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

PS-NTRUReEncrypt: Re-Encryption Key Generation and
Re-Encryption

Re-Encryption Key Generation:

Input: secret keys skA = fA and skB = fB

The re-encryption key between users A and B is

rkA→B = skA · sk−1B = fA · f−1B

Re-Encryption:

Input: a re-encryption key rkA→B and a ciphertext CA

Samples a random polynomial e′ from a distribution Ψα

Output re-encrypted ciphertext

CB = CA · rkA→B + pe′



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Multihop Correctness

Ciphertext re-encrypted N times:

CN = pg0f
−1
N s+ pe0f0f

−1
N + pe1f1f

−1
N + ...

+ peN−1fN−1f
−1
N + peN +Mf0f

−1
N

= pg0f
−1
N s+

[
N−1∑
i=0

peifif
−1
N

]
+ peN +Mf0f

−1
N

When decrypting CN (assuming no decryption failures):

C ′N = CN · fN = pg0s+

[
N∑
i=0

peifi

]
+Mf0

Since, f0 = 1 mod p and pg0s = peifi = 0 mod p, then:

C ′N mod p = M



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Experimental setting

Implementation of our proposals:

NTRUReEncrypt is implemented on top of an available
open-source Java implementation of NTRU
PS-NTRUReEncrypt was coded from scratch, using the Java
Lattice-Based Cryptography (jLBC) library

Execution enviroment: Intel Core 2 Duo @ 2.66 GHz



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Performance of NTRUReEncrypt

Table : Computation time (in ms) and number of hops of
NTRUReEncrypt for different parameters

Parameters Enc. Dec. Re-Enc. # Hops

(439, no, 128) 0.64 0.30 0.24 5

(439, yes, 128) 0.16 0.30 0.23 5

(1087, no, 256) 1.39 1.25 1.05 21

(1087, yes, 256) 0.48 1.26 1.07 15

(1171, no, 256) 0.80 1.12 1.14 21

(1171, yes, 256) 0.43 1.22 1.15 14
(1499, no, 256) 0.74 1.78 1.73 50

(1499, yes, 256) 0.32 1.67 1.66 42



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Comparison of NTRUReEncrypt to other schemes

Encryption Decryption Re-Encryption
0

10

20

0.43
1.22 1.151.17

0.47

20.5

11.07 11.21 11.48

22.52

11.89

22.29

T
im

e
(m

s)

NTRUReEncrypt Aono et al.

BBS Weng et al.



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Comparison of NTRUReEncrypt to other schemes

Table : Computation time of several proxy re-encryption schemes (in ms)

Scheme Enc. Dec. Re-Enc.

NTRUReEncrypt 0.43 1.22 1.15

Aono et al 1.17 0.47 20.5

BBS 11.07 11.21 11.48

Weng et al 22.52 11.89 22.29

Ateniese et al 22.76 13.76 83.52

Libert and Vergnaud 155.27 443.87 386.93



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Performance of PS-NTRUReEncrypt

Table : Computation time (in ms) and size (in KB) of
PS-NTRUReEncrypt for different parameters

n log2 q Enc. Dec. Re-Enc. Size

32 23 0.93 0.99 1.05 0.09

64 28 4.53 4.23 4.32 0.22

128 32 17.28 17.32 17.45 0.50

256 37 80.64 81.045 86.56 1.16

512 41 333.75 334.07 359.54 2.56

1024 46 1333.03 1344.10 1461.46 5.75



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Conclusions

NTRUReEncrypt is a highly-efficient proxy re-encryption
scheme based on the NTRU cryptosystem

This scheme is bidirectional and multihop, but not
collusion-resistant

The key strength of this scheme is its performance:
outperforms other schemes by an order of magnitude

Potential improvement with parallelization techniques

Opens up new practical applications of PRE in constrained
environments

We also propose PS-NTRUReEncrypt, a provably-secure
variant that is CPA-secure under the Ring-LWE assumption



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Future Work

Achieve CCA-security

Definition of a unidirectional and collision-resistant scheme

Fine-tune the parameters of NTRUReEncrypt for decreasing
the probability of decryption failures after multiple
re-encryptions

Better bounds for the provably-secure version

Analysis of the selection of parameters based on best known
lattice attacks



Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions

Thank you!


	Proxy Re-Encryption
	NTRU
	NTRUReEncrypt
	PS-NTRUReEncrypt
	Experimental results
	Conclusions

